
May, 1990
Volume 1, No. 3

The Journal of Apple II Programming

Sweet 16 Again &
"In Search of Bert"

This ntonth in 8/16:

The Publisher's Pen, Ross W. Lambert 3

Sweet 16: A Blast From the Past, Matt Neuberg .. 4

Illusions of Motion, Steven Lepisto 15

Parms Away, Robert Stong 22

Making a List, Steve Stephenson 26

Soft Thoughts, John Link 32

AppleWorks™-Style Line Input, Tom Hoover 33

Hired Guns ... 41

$3.50

Purchase Slide-On battery (JP1hloto-Copyoo~e)
kits from your local . .
dealer, distributor, user's
group, or direct from Nite
Owl.
School Purchase Orders
are welcome.
Order your IIGS a spare
today!

Telephone:
(913) 362-9898

Quantity • Pricing

FAX: Add $2.00 I Order
(913) 362-5798 Overseas add $5.00

New kit restores your Apple IIGs
and

saves you the hassle and expense
of normal solder type batteries.

If you purchased an Apple IIGS computer before August
1989 (512K model) , a Lithium battery was soldered onto the
computer board at the factory and the internal clock started
ticking. It is just a matter of time until the battery runs out of juice
and your computer forgets what day it is and any special settings
you have selected in the Control Panel.

If the software you are running uses the date and time to
keep track of records you could be in for real trouble when the
clock runs out. The IIGS is also known to lose disk drives along
with numerous other side effects caused by a dead battery.

Before the introduction of Nite Owl's Slide-On battery, the
normal method for replacing the IIGS battery was to pack your
computer up and take it to your local Apple dealer. The service
department would solder on a new one and charge you a small
fee, usually between $40 and $80. That was very inconvenient,
time consuming, and expensive for the typical computer owner.

Slide-On battery replacement is not much more difficult
than changing a light bulb. Using wire cutters, scissors, or nail
clippers, the old battery is removed leaving the original wires still
soldered to the mother board. The new Slide-On battery has
special terminals which have been designed to fit onto the old
battery wires . It usually takes only a couple of minutes.
Complete, easy-to-follow instructions are included with every kit.

Typically, our customers have reported that the original
equipment batteries have an average life expectancy of 2 to 3
years. This is about half as long as they were supposed to last.
Slide-On replacement kits include Heavy Duty batteries which
should provide for a longer battery service life.

We highly recommend that every IIGS owner keep a spare
battery on hand, ready for when the inevitable battery failure
occurs. These Lithium batteries have a shelf life of over 10 years .
The Slide-On kits come with a full 90 day satisfaction guarantee.

Ship to:

~-----------------l

I N ite Owl Productions I ~----:,......-:!l----:,~""7":'::--:------+--K-an-sa-s -+------1

I Slide-On Battery De pt. A I l-:---:--....,...,...--:---:-~---::------fSS;hjal~esfnT~ax&l ____ 1
I 5734 Lamar Avenue I , · d · th Shipping & am mtereste m o er Handling

I Mission, KS 66202 1 " TOTAL
l_-----J)SI__-------- J L..::=------:--------:---L---......_ ___ __.

(Cut & Paste Address Label) Prices m;:y Change without notice.

Copyright (C) 1990, Ariel Publishing, Most Rights Reserved

Publisher & Editor-in-Chief
Classic Apple Editor
Apple llgs Editor
Contributing Editors

Subscription Services

Ross W. Lambert
Jerry Kindall
Eric Mueller
Walter Torres-Hurt
Mike Westerfield
Steve Stephenson
Jay Jennings
Tamara Lambert
Becky Milton

Introductory subscription prices in US dollars:

• magazine
1 year $29.95 2 years $56

·disk
1 year $69.95 6 mo $39.95 3 mo. $21

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publishing, Inc. warrants that the information in 8116 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at any
time. Ariel Publishing's LIABILITY FOR ERRORS AND OMIS
SIONS IS LIMITED TO THIS PUBLICATION'S PURCHASE
PRICE. In no case shall Ariel Publishing, Inc. Ross W. Lambert,
the editorial staff, or article authors be liable for any incidental or
consequential damages, nor for ANY damages in excess of the
fees paid by a subscriber.

Subscribers are free to use program source code printed herein
in their own compiled, stand-alone applications with no licensing
application or fees required. Ariel Publishing prohibits the distri
bution of source code printed in our pages without our prior per
mission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249.

Apple, Apple .II, Apple lie, Apple llgs, Apple lie, Apple lie+, Ap
ple Talk, Apple Programmers Workshop, and Macintosh are all
registered trademarks of Apple Computers, Inc.

Apple Works is a registered trademark of Claris, Corp.

ZBasic is a registered trademark of Zedcor, Inc.

Micol Advanced Basic is a registered trademark of Micol
Sytems, Canada

We here at Ariel Publishing freely admit our shortcomings, but
nevertheless strive to bring glory to the Lord Jesus Christ.

The
Publisher's
Pen
by Ross W. Lambert

I recently came across the hippest, hottest, most hap
penin' computer bookstore I've ever seen. It's called The
Computer Literacy Bookstore, and despite the dorky
name (sorry Dan!) it has all the Apple II information ever
printed since the dawn of time. The owner could tell me
off the top of his head the status of an old, old Apple II
book for which I've been searching for years. Although
they are not totally dedicated to the II (you can get Mac
stuff there also). the II is definitely where their heart is.
According to owner Dan Doernberg they have some
thing like 60,000 Apple II volumes in stock.

Now, I'm biased- they are the first folks to sellS/ 16over
the counter. But I think that says something really
terrific about them all by itself. I really doubt you'll be
disappointed if you give them a call. Their number is
(408) 435-1118. Tell 'em Mike Rochip sent you.

A Bert Kersey Sighting

Beloved Apple II pioneer Bert Kersey was recently
sighted buying a six pack (of Coca-Cola) at a 7-11
outside of Barstow, CA. Rumor has it that he was in the
company of Paul Lutus. Somebody get a camera and call
The Enquirer.

What's the big deal about Bert Kersey. you ask? Why
would I put his name on the cover of our April issue? I'll
tell you why. Go read Guy Kawasaki's The Macintosh
Way. It is a decent and humorous book. But it is the
embodiment ofthe Macintosh (aka "Jobs") Arrogance.
01' Guy writes like he and Steve invented the "Macin
tosh Way".

Sorry, Guy. Bert Kersey invented it. Only it is "The
Apple II Way". Do you remember the first time you
opened up a Beagle Bros product? I remember first of all
that I was impressed with what a great deal it was for the
money. I also remember that ol' Bert gave us mucho

extras and goodies. I also remember laughing a lot. I
also remember great service and personal responses
from Bert himself. I have a handwritten note from him
still in my files.

Best of all, Bert was doing these things when Guy

Kawasaki was still having his mother wipe his nose. I
still can't figure out why Bert's mother was wiping Guy's
nose, though.

We here at Ariel are in search of Bert Kersey. We hope
you are, too. == Ross ==

Sweet 16: A Blast From the Past
by Matt Neuberg

(Editor: if Matt is as successful resurrecting the classical
(aka 'dead? languages he teaches as he is resurrecting
Sweet 16, then it won't be long before Latin is back in
vogue. mw. Matt's stationery says "Lingua Optima.
Lingua Mortua" on it, which I believe means 'The best
language is a dead language".)

The 8/16 paradox

Those who have replaced their chip with a 65802, or
who have bought a GS, pay no attention. This is for the
faithful few. still trying to live with the paradox of the
6502 and 65C02 machine: 8-bit processing, but 16-bit
addressing. If you've ever written a machine language
program of any size, you've faced the inconvenience of
this paradox. Let's take an example.

Imagine we are faced with the following task. Suppose
a textfile has been Mpacked" as in Apple Pascal: every
time a run of3 or more blanks occurs (up to 255), it has
been replaced by a special character (say. $FF) followed
by a byte containing the number ofblanks. Our job is to
decode (Munpack") the file. replacing each occurrence of
"$FF N" with N blanks. Simple? Just wait.

Let two buffers be allocated in memory, starting at
addresses FILEPK and FILEUNPK; suppose the packed
file is already in place. starting at FILEPK, and a variable
EOFPK points to the address after the last byte of the
file. All we have to do is run through every byte from
FILEPK up to EOFPK-1. If it isn't $FF, we'll just transfer
it to the FILEUNPK buffer; if it is $FF, we'lllook at the
following byte and feed that number of blanks to the
FILEUNPK buffer. We must also know the length of the
resulting unpacked file when we are done, so we can
save it.

Listing 2 shows a typical way to code it. It isn't fancy or
tricky: but I don't mind telling you, it drove me crazy
having to write it, and it isn't terribly easy to read.
either.

The trouble is that this routine is all about manipulat
ing addresses. and it takes two bytes to name and point
to an address. See the large number of instructions
taken up with handling 16-bit (2-byte) information one
byte at a time ("lo-byte. hi-byte")? I've saved some space
by relegating some of these operations to subroutines,
but this doesn't make the program logic any clearer,
and as I was writing the program, each time I realised
I would need such a subroutine. I had to go back and
change everything. And having to do everything twice.
as it were, caused me to make stupid errors while
coding, some of which I didn't catch until I tested the
program. (In fact, there is still a bug in the program
logic: can you find it?)

In my version, the whole task assembles to more than
110 bytes. This seems unnecessarily bulky. It might be
possible to save a byte here and there, but this would
require some clever coding, and more hard work. Isn't
there a better way?

Enter Wozniak's dream machine

In the late '70's, when the great Steve Wozniak was
designing Integer Basic for the Apple II. he encountered
the 8/16-bit paradox, and devised an ingenious solu
tion: Sweet16. I had seen references to Sweet16- for
example, MerlinPro assembles and disassembles
Sweet 16 code- but. like most people who got into micro-

computers during the '80's, I had no idea what it was.
(My situation exactly- Editor) Then one day, quite by
accident, I found out.

Sweetl6 is a 16-bit interpreter: i.e., it is 6502 code
which simulates an imaginary processor, a processor
capable of understanding and carrying out instructions
which operate on 16-bit data. You can install this code
in your Apple II, and when you have 16-bit operations
to perlorm in an assembly-language program, you can
have Sweetl6 cany them out for you. Wozniak pub
lished the codeforSweet16 in the November 1977 issue
of BYIEmagazine. It is the basis for Listing 1 (discussed
below).

Note: there are some errors in Woz's original article, so
be careful if you hunt it up. But these have been
eliminated in the following discussion.

As the Woz was quick to point out, Sweetl6 is slow,
probably 10 times slower than if the same tasks were
performed by ordinary 6502 code. But once you've
bought a computer, time costs you nothing; and be
sides, with today's accelerator boards and chips, you
can make back almost half the extra time. On the other
hand, the Sweet 16 interpreter is ingeniously written in
such a way that code written for it is extremely compact;
this was the chief reason for Wozniak's inventing it, for
in those days space inside the Apple II was at a
premium. Moreover, Sweetl6 gives the programmer
another advantage, which Wozniak did not mention: it
is extremely easy to code for. There are two reasons for
this. First, you no longer have to keep track separately
of each byte of your 16-bit data. Second, whenever you
perlorm an indirect load or store through Sweet16, the
16-bit pseudo-register which points to that data is
automatically incremented or decremented, making it
very easy to operate on blocks of data, as in our example
task.

The Sweetl6 architecture

Sweetl6 operates using 16 16-bit pseudo-registers.
These occupy the space in the 0-page from $00 to $1F,
and are designated RO-R15.

Some of these registers are special. The first register,
RO, is the "accumulator". The last, R15, is used as the
"program counter", telling the interpreter where to go to
fetch an instruction from your program - either the next
consecutive instruction, or the instruction to jump to

after a branch. R14 is a "status register", used to point
to the register in which the result of the last operation
is stored, so that that result can be tested and, depend
ing on its value, a branch can be perlormed. R14 also
holds the "carry" bit, used for similar purposes. R13 is
used by each CPR (compare) operation. R12 is used as
a "stack pointer" when your Sweet 16 code calls or
returns from a subroutine (Sweetl6 does not use the
Page 1 stack). which means that if you use any subrou
tines in your Sweetl6 code, you must have initialized
R12 first, and you must not alter it during a subroutine.

R1-R11 are the registers free for your use, and will
usually prove more than sufficient. There are no X- or
Y-registers: but you won't need them, because indirect
addressing is done automatically for you, and because,
as mentioned above, Sweetl6 itself always perlorms an
increment or decrement of the register employed for
indirect addressing.

The Sweetl6 instruction set: register ops

In these descriptions, the shorthand "Rn" is used to
designate a particular 16-bit register (usually R1-11).
When assembling with MerlinPro. the "R" may be omit
ted.

Eight instructions operate directly with the various
registers and the "accumulator". Don't forget that
these are 16-bit registers holding 16-blt values!

SET Rn, const sets Rn to the value designated by
const. With MerlinPro's assembler, this may be a
previously EQUated label, a program line label, or an
immediate value. The "#" symbol should not be em
ployed, but if an immediate value is given, the "$"
symbol maybe. Remember, if you SET a register using
a program line label, the resulting value will be the
address of the line in memory, not whatever data
appears in that line. (The comma is not required by
MerlinPro: a space may be used instead, or nothing at
all - e.g., SET R3LABEL).

LD Rn loads the "accumulator" with the 16-bit value in
Rn
ST Rn stores the 16-bit value in the "accumulator" into
Rn.

INR Rn increments Rn

DCR Rn decrements Rn. Rn can be the "accumulator"
(RO).

ADD Rn adds the value in Rn to the value in the
"accumulator". and leaves the result in the "accumula
tor".

SUB Rn subtracts the value in Rn from the value in the
"accumulator". and leaves the result in the "accumula
tor". There is no need to clear or set the "cany" before
these operations: the "carry" is set for you after these
operations, however. analogously to 8-bitADC and SBC
operations.

Seven operations employ indirect addressing: that is,
they fetch or set a value in memory whose address is
named by the contents of Rn, not the value of Rn itself.
These ops also affect the contents of Rn, either incre
menting or decrementing them. either before or after
the operations. as described. The "@" symbol, denoting
indirect addressing, is required for assembly by Merlin
Pro.

LD @Rn loads the "accumulator" with the 8-bit byte in
the memory address named by Rn (the high 8 bits of the
"accumulator" are just zeroed).

ST @Rn stores the low 8 bits ofthe "accumulator" into
the memory address named by Rn.

LDD @Rn loads the "accumulator" with the 16-bit word
residing in memory, in the usual lo-hi order. at the
address named by Rn.

STD @Rn stores all 16 bits of the "accumulator" into
memory, in the usuallo-hiorder. starting at the address
named by Rn. After each of these four operations, Rn is
incremented - once after LD and sT. twice after LDD and
STD, so that Rn now points to the next 8-bit or 16-bit
piece of data in memory.

Note: be careful! These opcodes are confusingly named.
The direct ops, LD Rn and ST Rn, deal with 16-bit
words. The analogously named indirect ops, LD @ Rn and
ST @Rn, deal with bytes.

POP @Rn loads the "accumulator" with the single byte in
the memory address named by Rn, but only after having
decremented Rn once (the high 8 bits of the "accumula
tor" are just zeroed).

Similarly, POPD @Rn loads the "accumulator" with the
16-bit word residing, in the usuallo-hi order, starting
at the memory address named by Rn, but only after
having decremented Rn twice.

STP @Rn stores the low 8 bits of the "accumulator" into
the memory location named by Rn, but only after having
decremented Rn once.

The Sweet 16 instruction set: branch ops

We come now to branch instructions, that is, instruc~

tions dealing with the path that the program is to follow.
Exactly as with 6502 branching, Sweet 16 branches are
limited to a distance of backward 128 bytes or forward
127 bytes.

Three instructions perform an unconditional branch.

BR LABEL branches to the address named by LABEL.
This is the closest thing Sweet 16 has to a JMP instruc
tion. but the limitation to jumping -128 to +127 bytes.
but this is not usually a problem, because Sweet 16 code
is so compact.

BS LABEL branches to the address named by LABEL, but
remembers the point from which the branch was made.
A subsequently encountered command RS branches
back to the instruction following the BS command.
(Editor: There's ajoke in there somewhere ...) These are
thus the equivalents of the 6502 JSR and RTS com
mands. used for calling and terminating subroutines,
and. as with them, subroutines may be nested. Note,
however, that it is up to the user to set R12 beforehand
with the lowest (that's lowest!) address of a safe block of
memory to be used to save the addresses from which BS
commands are executed.

Eight instructions branch if certain conditions are met.
These conditions have to do either with the value of the
"carry" or with the value of the last register (including
the "accumulator") which was directly referred to (called
the "last result"). Thus, for the direct commands listed
above, the value involved is that of the register Rn on or
from which the operation was performed; for the indi
rect commands, and for ADD and SUB, the value involved
is just that of the "accumulator".

Hqwever, such branches alone would provide no way to
perform a comparison test between the "accumulator"
and some other value. To take care of this, a command
CPR Rn is implemented. This command actu ally sub
tracts the value in Rn from the value in the "accumula
tor". and it is the result of this subtraction (stored in
R13) which is tested ina subsequent conditional branch
command. The operation is thus analogous to the 6502
CMP instruction.

BZ LABEL branches to LABEL only if "last result" is 0.

BNZ LABEL branches to LABEL only if the "last result"
is not 0. These are thus the equivalents, whether or not
they follow a CPR command, of the 6502 BEQ and BNE
commands.

BP LABEL branches to LABEL only if the "last result" is
positive

BM LABEL branches to LABEL only if the "last result" is
negative. A 16-bit word is considered positive if and only
if the hi-bit of its hi-byte is not set. These commands can
thus be used, whether or not they follow a CPR com
mand, like the 6502 BPL and BMI commands.

BC LABEL branches to LABEL only if the "cany" is set

BNC LABEL branches to LABEL only if the "cany" is clear.
These commands may be used after an ADD or SUB
command): note also that after a CPR command, they
are the equivalents of the 6502 BGE/BCS and BLT /BCC
commands, respectively. (Note that you must use these
commands immediately after the command which sets
or clears the "cany". because all other ops clear the
"cany".)

BMl LABEL branches to LABEL only if the "last result"
is -1 ($FFFF)

BNMl LABEL branches to LABEL only if the "last result"
is not -1.

Entering and leaving Sweetl6 mode

During a 6502 program, to signify that the following
code is Sweetl6 code and is to be interpreted by the
Sweetl6interpreter. executeaJSR SW16, where SW16is
the address of the Sweet 16 interpreter. The interpreter
will then read and execute all subsequent code, until it
encounters the command RTN; at this point. control will
be turned over to the 6502, starting with the byte after
the RTN.

For debugging purposes, Sweetl6 also recognises a BK
command: this simply executes a 6502 BRK, sending
you to the monitor. After examining or modifying
memory, you may resume execution from the monitor
at the instruction after the break by modifYing RlS
($1E/1F) to the memory address at which the BK was
encountered and calling for a GO from the address

called INTERP in Listing 1 (e.g., type "319G"). (You have
to know in advance what this address it; the monitor will
not display it for you, but will display the address of
Sweetl6 BK subroutine instead.) To avoid having the BK
occur on a subsequent pass. you may substitute for it
a byte OD, which is interpreted by Sweetl6 as a NUL (=

NOP) .

The paradox resolved

As an illustration of these opcodes. and of the value of
Sweetl6, examine Listing 3. It performs exactly the
same task as Listing 2!

See the improvements? First, Listing 3 occupies about
half the code space of Listing 2. This is because all the
register operations except for SET are only 1 byte long,
thanks to Wozniak's ingenious coding method (see
Table 1). Of course, we also have to occupy some
memory with the Sweetl6 interpreter: but clearly a
program involving several Sweet 16 routines would soon
realise significant savings in space. and it should not be
hard to find a place to stash the Sweet 16 interpreter
where we will not find its presence troublesome.

Second, and more important. Listing 3 was easy to
write. In fact, I wrote it from start to finish, without
errors, without ever having to go back to an earlier step
and modify it!

So Sweetl6 code is easy to write, easy to debug, and
easy to read: it's compact. and it's incredibly powerful
whenever you have to deal with 16-bit information.

Feel Sweet 16 again

Listing 1 contains my version of the Sweet 16 inter
preter. It is based on Steve Wozniak's original published
version, and for that reason alone is worth reading even
if you don't intend to implement Sweet 16 for yourself,
because Wozniak's code is nothing short of brilliant.
But my version also contains some minor improve
ments over Wozniak's original. It is better labelled and
commented than his version was. It saves the contents
of zero-page addresses to be used as Sweetl6's "regis
ters" on entry. and restores them on exit. so that you can
use it in combination with Applesoft programs and
BASIC.SYSTEM. It also includes a self-relocator. so that
half the code can be hidden away in Page 3: of normal
RAM. only Page 8 is ultimately occupied.

To use Sweet 16, first type it in and assemble it, and save
it as, say, SWEET16. When you want it in place in
memory. BRUN it; this will cause the relocator to put part
ofthe code into Page 3, the rest remaining in Page 8, and
the program will then RTS to you. Now you can load and
run assembly-language programs using Sweet 16 code:
any time your program does a JSR SW16 (here, $300),
the code that follows will be interpreted by Sweet16.

A number of modifications are possible. If you don't
want to use Page 3, just omit the self-relocator and
reassemble: in that case, the interpreter will reside in
Pages 8 and 9, and calls to it will have to be made to
$900. (You will then want to BLOAD SWEET16 to put it
into memory, not BRUN it.) lfyou don't want Pages 8 and
9 occupied. you can modify and reassemble the code to
be located anywhere you like: the only important thing
is that all of the code from the label ROUTINZ to the label
RTN must be on a single page: otherwise the calculation
of subroutine addresses, and the branching to those
addresses. won't work.

You're not even confined to using $00-1F as your
Sweet16 registers: any series of 32 consecutive 0-page
locations will work (in fact, $FO-FF and $00-0F would
work, since direct indexed zero-page addressing auto
matically wraps around from $FF to $00). Just redefine
RO, and STAT and PC relatively to it. Ifyou know you've
got 32 consecutive 0-page locations absolutely free, you
could also omit the saving and restoring operations, to
obtain some extra microseconds: if you don't care about
losing the contents of the 6502 registers across a
Sweet 16 call. you could omit the calls to the monitor
SAVE and RESTORE routines as well.

Have fun with Sweet16: it just might be the fountain of
youth that your assembly-language programs need!

Matt Neuburg, PhD
13150Wenonah SE #121
Albuquerque, NM 87123
(505) 292-7811

Table 1 - Sweet 16 Opcodes

code: the effective address is calculated as the distance,
in bytes. from the byte following the byte containing the
effective address. (Thus, o 1 FD would branch to the byte
before the branch command: 0 1 FE would loop
indefinitely: 0 1 0 0 would continue as if nothing had
happened: 0 1 0 1 would skip the byte following the
branch command.] The operations RS, RTN, BK, and
NUL are also of the form On; they are single-byte codes.
The register operations, except for SET, are also all
single-byte codes, where the first (hi) hex digit signifies
the operation, the second (lo) hex digit designates the
register to be operated on (15 register operations, 16
registers). The SET operation requires 3 bytes, one for
the operation and the register. two for the value to which
the register is to be set, in lo-hi order.

1n SET Rn 00 RTN
2n LD Rn 01 BR
3n ST Rn 02 BNC
4n LD @Rn 03 BC
Sn ST @Rn 04 BP
6n LDD @Rn 05 BM
7n STD @Rn 06 BZ
8n POP @Rn 07 BNZ
9n STP @Rn 08 BM1
An ADD Rn 09 BNM1
Bn SUB Rn OA BK
Cn POPD @Rn OB RS
Dn CPR Rn oc BS
En INR Rn OD NUL
Fn DCR Rn [OE and OF default to NUL]

Listing 1

1 ************** *** ************ ** *** ******** ** **
2 *
3 * SWEET16

*
*

4 * *
5 * based on the original by Steve Wozniak *
6 * new dissassembly w/ clarified code & self- *
7 * relocator, by Matt Neuburg , PhD 3/9 / 89 *

8 * *
9 **************** ** **** *** ********** **** *******

10
11 RO
12 STAT
13
14
15

EQU $00 ;and $01, " a ccumulator"
EQU $10 ;"status" regstr: contains

;indx to place last result
;but since this is Rn*2, bit 0
; is free: so it holds "carry"

All the branch opcodes, including BS, are ofthe form On, 16 PC EQU $1E ;and $1F, "program counter"
$FF4A ;monitor rtn, save regs
$FF3F ;monitor rtn, resto re regs

where n determines which operation is to be performed, 17 SAVE EQU
and must all be followed by a second byte giving the 18 RESTORE EQU
effective address to branch to, precisely as with 6502

19
20
21
22
23
3
24

ORG

JMP

$800

RELOCATE;Note:OMIT if don't want
;self-relocation into Page

25 *---------------
26 * subrtn for Sweetl6 ops: LABELs are op names
27 *-----------------
28

74
75
76
77
78 STD@
79
80
81
82
83 POP
84

29 ROUTINZ EQU
30

* ;CODE FROM HERE TO RTN MUST BE 85 POPD
;ALL ON A SINGLE PAGE 86

31
32 *-----------------
33 * register ops: on entry, Y is 2*num of opcode,
34 * X is index toRn (i.e., it's 2*n)

87
88 poplo
89
90

LOA
STA
JMP

JSR
LOA
STA
JMP

LOY
BEQ
JSR
LOA
TAY
JSR
LOA
S:;I.'A

35 *-----------------
36

91 STY
92 stzandgo LOY

37 SET
38
39 LD
40 BK
41
42
43
44
45
46 ST
47
48
49
50
51
52 OCR
53
54
55 :no
56
ready
57

JMP

LOA
EQU
STA
LOA
STA
RTS

LOA
STA
LOA
STA
RTS

LOA
BNE
DEC
DEC
RTS

58 ST@ LOA
59 putinc STA
60 LOY
61 zerostat STY
62 INR INC
63 BNE
64 INC

SETZ

RO,X
*-1
RO
RO+l,X
RO+l

RO
RO,X
RO+l
RO+l,X

; (no room here) 93
94

;move Rn to RO 95
;i.e., 00-BRK (cute, eh?) 96 STP@

97
98
99

;STAT points to Rn already 100

;move RO to Rn
101 SUB
102 CPR
103
104
105

;STAT pts to Rn already 106
107

RO,X ;decrement Rn 108 finish
109 :no

RO+l,X
RO,X

;STAT points to Rn al-

RO ;send lo byte of RO
(RO,X) to memory via Rn
to

110
111
112
113
114 ADD
115
116
117

STAT ;RO holds last rslt, say so 118
RO,X ;increment Rn 119
:no 120
R0+1,X 121

STY
RTS

JSR
LOA
STA
JMP

LOY
SEC
LOA
SBC
STA
LOA
SBC
STA
TYA
ADC
STA
RTS

LOA
ADC
STA
LOA
ADC
LOY
BEQ

(RO,X) ;do hi-byte
RO+l
INR ;and do another inc Rn

ST@
RO+l
(RO,X)
INR

;do lobyte, inc Rn, STAT
;do hi-byte

to
poplo
OCR
(RO,X)

OCR
(RO,X)

RO
RO+l
tO
STAT

OCR
RO
(RO,X)
stzandgo

tO

RO
RO,X
RO,Y
RO+l
RO+l,X

;and do another inc Rn

;hi-byte 0 if simple po
; and go do lo-byte
; dec Rn
;get hi-byte from mem
;save it in Y
;dec Rn
;get (lo-)byte from mem
;lo-byte into "ace"
;hi-byte into " ace"
;RO holds last result ..

;so say so

; decrement Rn
;stick lo-byte of "ac

; in memory via Rn
;STAT := 0

;if SUB, result to RO
;if CPR, Y=l3*2 on ent
;do lo-byte subtracti

;put result in RO or R
;do hi-byte subtracti

RO+l,Y ;put result in RO orR
;place of result * 2

tO ;"carry" into bit 0
STAT ;rec both in STAT reg

RO ;do lo-byte addition
RO,X ;DON'T CLC-may be seri
RO ;result to RO
RO+l ;do hi-byte addition
RO+l,X
tO ;result is to go into
finish ;& let prev rtn finis

65 :no RTS ; STAT pts to Rn already if INR 122 *-----------------
66
67 LD@
68
69
70
71
72
73 LDD@

LOA
STA
LOY
STY
BEQ

JSR

123 *branch ops;on entry,Y=O,X is 2*num of opcod
(RO,X);get 1 byte from mem via Rn 124 * ace holds num of register we are to examin

RO ;give it to lo-byte of RO 125 *-----------------
tO 126
R0+1 ;just one byte, zero hi-byte 127 BS
zerostat; (always) set STAT, inc Rn 128

stack
LD@ ;do lobyte, inc Rn, STAT-0 129

LOA
JSR

LOA

PC
put inc

PC+l

; (X=l2*2 on entry)
use Rl2 to pt to

put ret addr into m

130
131 BR

JSR
CLC

132 BNC BCS
133 adjstpc LDA
134 BPL
135 DEY
136 :no ADC
137 STA
138
139
140
141
142
143 BC
144 NUL
145

TYA
ADC
STA
RTS

BCS
RTS

put inc

NUL
(PC), Y

:no

PC
PC

incr R12 as we go
;guarantee branch

187
188

;don't bra if carry set 189 RS
;examine branch addr 190

;if displacmnt pos, Y:=O 191
;if dsplacmnt neg, Y:=-1 192
;clear carry guaranteed 193
;lobyte PC+displacement 194
;tricky 2's-complement 195

PC+1 addition: 196
PC+1 ;hibyte PC+(O or -1)+carry 197

;whew! PC now correct 198 RTN
199

BR ;here's an easy one: 200
;no carry, no bra (also NUL) 201

RTS

LDX
JSR
LDA
STA
JSR
LDA
STA
RTS

JMP

DS

i24 ;12*2, pt to stack thru R
DCR
(RO,X)
PC+1
DCR
(RO,X)

PC

RTNZ

;dec stack ptr
;pop hi-byte ret ad

; dec stack ptr
;pop lo-byte ret ad

;that's all, PC is rea

; (no room here)

\ ;fill out the page
;so SW16 will be at start

146 *----------------
of
202
203

; next page
147 * subroutine of remaining branch ops
148 *----------------
149

204 *-----------------
205 *---------------
206 *-----------------
207

150 ldhi
151
152
153
154

ASL
TAX

LDA
RTS

R0+1,X

;Rn in ace: double it,
;use rslt as indx to Rn,

;& fetch hi-byte of Rn 208
;& you also clrd carry 209

210
ORG $300;0MIT if you don't want sel

; relocation to Page 3
155 *----------------- 211
156 *and here they are . . . 212 *-----------------

213 * entry to Sweet16 157 *---------------
158
159 BP
160
161
162

JSR
BPL
RTS

ldhi
adjstpc

214 *----------------
;examine hi half of Rn 215

163 BM
164
165
166
167 BZ
168
169
170
171
172 BNZ
173
174
175
176
177 BM1
178
179
180
181
182
183 BNM1
184
185
186

JSR
BMI
RTS

JSR
ORA
BEQ
RTS

JSR
ORA
BNE
RTS

JSR
AND
EOR
BEQ
RTS

JSR
AND
EOR
BNE

;branch if positive 216 SW16
217

JSR
LDX

218 :MOVEONE LDA
ldhi
adjstpc

;examine hi half of Rn 219
;branch if negative 220

221
222

ldhi ;pick up hi half of Rn 223
RO,X ;will give 0 iff both are 0 224
adjstpc ;branch if so 225

226
227

STA
DEX
BPL

PLA

STA
PLA
STA

ldhi ;pick up hi half of Rn 228 INTLOOP JSR
RO,X ;will give 0 iff both are 0 229 JMP
adjstpc ;branch if not 230

231 INTERP
232

ldhi ;pick up hi half of Rn 233
RO,X ;will be FF iff both are FF 234
i$FF ;is it? CMP might wrck crry ctn
adjstpc ;branch if so 235

236 :NO
ing

ldhi ; pick up hi half of Rn 237
RO,X ;will be FF iff both are FF ctn
i$FF ;is it? CMP might wrck crry 238
adjstpc ;branch if not num

LDA
PHA
INC
BNE

INC
LDY

LDA

AND

SAVE
i31

; preserve registers
;preserve 32 0-p age valu

RO,X
STORAGE, X

:MOVEONE

;initialize "program counte
PC from calling address

PC+l

INTERP ;interpret a command
INTLOOP ;again & again & agai

i>ROUTINZ;get pg-num of subrtn
; & stuff on the stac

PC ;incrmnt program count
:NO ;rdy to examine instru

PC+l
iO ;rdy for indrct addrss

(PC),Y ;exmne opcde of instru

i$0F ;msk 1 / 2, leaving reg

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261 TOBR
262
263
264 :NO
265
266
267
268
269
270
271
272
273

TAX

LSR
EOR
BEQ

STX

LSR
LSR
LSR

;and use it as X-index 297
;restore it 298

(PC),Y ;considr only 1/2 opcode 299
TOBR ;if 0, branch instr: do it 300

(also BK, RTN, or NUL) 301
302

STAT ;sav regstr specifiction*2 303
;so that if brnch follows, 304
;we know what reslt to chk 305

;obtain opcode digit*2 306
307
308

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

BNMl-1
SUB-1
BK-1
POPD-1
RS-1
CPR-1
BS-1
INR-1
NUL-l
DCR-1
NUL-l
NUL-l

TAY ; & use it as Y-index, to 309 DB NUL-l
LDA OPTBL-2,Y;get lobyt of subr addr 310

(first opcode is 1, 1*2=2) 311 *----------------
PHA ;stick on the stack... 312 * opcode subroutines that wouldn't fit into 1
RTS

INC
BNE
INC
LDA
PHA
LDA
LSR
RTS

;and "jump" to subr 313 *----------------
(the "Wozniak waltz") 314

;with Y holding 2*num of op 315 * for RTN
; & X indexing Rn 316

317 RTNZ
PC ;prepare to examn brnch addr 318
:NO ; (the subroutines will do 319
PC+l ; actual examining) 320
BRTBL,X ;get lobyte subr addr 321

PLA
PLA
LDA
STA
LDA

;stick it on the stack 322 STA
STAT ;examine "status reg" 323 LDX

;& prepare crry w/ it 324 :MOVEONE LDA
;"jump" to subr w/ ace hlding 325 STA

; register-num where
; "last result" is,
with Y=O, crry rdy, &

X=2*opcode

326
327
328
329
330 TEMPPC

DEX
BPL
JSR
JMP

DA

;pull ret addr from JSR INTE
; & throw it away

PC ;put PC in temp storage
TEMPPC ; before we trash it
PC+l ; by restoring 0-pag
TEMPPC+l
431 ;restr 32 0-page val
STORAGE, X
RO,X

:MOVEONE
RESTORE
(TEMPPC)
$0000

;restore registers
;BYE! bk to 6502-land.

;storage
274 * 331
275 * table of lo-bytes of addrs of opcode subrtn 332 * for SET: when we arrive, Y=2, X indexes Rn
276 * 333
277
278 OPTBL
279 BRTBL
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

SET-1 ;2 tabls are interwoven
RTN-1
LD-1
BR-1
ST-1
BNC-1
LD@-1
BC-1
ST@-1
BP-1
LDD@-1
BM-1
STD@-1
BZ-1
POP-1
BNZ- 1
STP@-1
BMl-1
ADD-1

334 SETZ
335
336
337

LOA
STA
DEY
LOA

338 STA
339 TYA
340 SEC
341 ADC
342 STA
343 BCC
344 INC
345 :DONE RTS
346
347 STORAGE OS
348
349 RELEND
350

NOP

(PC),Y ;get hibyte of const (y=
RO+l,X ;put in hi-byte of reg

(PC), Y
RO,X

PC
PC
:DONE
PC+l

32

; (y=l)
;get lobyte of const
;put in lobyte of re
;set acc=l

;cheatsies:need to add
;add 2 to program ctr
; (a 3-byte instruction

;PC rdy for nxt instr

;for saving 32 0-pg val

351 *-------- -------
352 *-----------------
353 * relocate second part of file to Page 3

Listing 2

1 ********************************
2 * *
3 * EXAMPLE OF A TASK INVOLVING *
4 * 16-BIT OPERATIONS *
5 * *
6 ********************************
7
8 * WARNING: this is NOT a complete program!
9 * Do NOT try to enter and run it!
10
11 FILEPK EQU
12 FILEUNPK EQU
13 PKPTR EQU
14 UNPKPTR EQU
15
16
17

ORG

$2000
$4000
$FC
$FE

$8000

;strt of packed file in mem
;where unpked file will go

;and $FD, pointer il
;and $FF, pointer 42

18 *----------------
19 * First, we've got to put into 0-page memory
20 * the file addresses, for indirect addressing
21 *----------------
22
23 UNPACK
24
25
26
27
28
29
30
31

LOA
STA
LOA
STA
LOA
STA
LOA
STA

i<FILEPK ; lo-byte ...
PKPTR
i>FILEPK ; ... hi-byte
PKPTR+l
i<FILEUNPK ;lo-byte ...
UNPKPTR
i>FILEUNPK ; ... hi-byte
UNPKPTR+l

32 *----------------
33 * Set Y=O, for indirect addressing
34 *----------------
35
36
37

LOY iO

38 *----------------
39 * Run through FILEPK, looking for DLE=$FF
40 *----------------
41
42 ADVANCE LOA
FILEPK
43
44
45
46

CMP
BEQ
STA
JSR

(PKPTR),Y ;look at byte of

i$FF ;is it OLE?
FEEDBLNK ;=> yes, go handle
(UNPKPTR),Y ;no, feed to FILEUNPK
INCPK ;inc PKPTR

53 ·-----------------
54
55 FEEDBLNK JSR
56 LOA

INCPK
(PKPTR), Y

;inc PKPTR, & fetch ..
;t of blanks to fee

57 TAX ;use it as index
58 LOA i$20 ; (SPACE)
59 ONEBLNK STA (UNPKPTR),Y;send blnk to FILEUN
60
61
62
63
64
65
always
66

JSR
DEX
BNE
JSR
JSR
BNE

INCUNPK

ONEBLNK
COMPARE
INCPK
ADVANCE

67 *-----------------

;inc UNPKPTR
;enough blanks sent
;No, go send ano the
;done w/ blanks, EC
;no, so inc PKPTR ..
; ... & loop back,

68 * Subroutine for incrementing PKPTR

69 *-----------------
70
71 INCPK
72
73
74 :NOTHI
75

INC
BNE
INC
RTS

PKPTR
:NOTHI
PKPTR+l

76 *-----------------

;lo-byte .. .

; ... hi-byte

77 * Subroutine for incrementing UNPKPTR

78 *---------------
79
80 INCUNPK
81
82
83 :NOTHI
84

INC
BNE
INC
RTS

UNPKPTR
:NOTHI
UNPKPTR+l

85 *-----------------

;lo-byte ...

; ... hi-byte

86 * Subroutine for comparing PKPTR with EOFPK
87 *-----------------
88
89 COMPARE
90
91
92
93
94
95 :NOTLO
96

LOA
CMP
BNE
LOA
CMP
BEQ
RTS

PKPTR+l
EOFPK+l
:NOTLO

;hi-byte ...

PKPTR ; .. . lo-byte
EOFPK
DONE ;they're eql, go finish

;they're not equal, retu

97 *-----------------
98 * Finish up, LENUNPK := UNPKTPTR-FILEUNPK+l
99 *-----------------
100

47 JSR COMPARE ;see if we're at EOFPK 101 DONE JSR
SEC
LOA
SBC
STA
LOA
SBC
STA

INCUNPK ;here's the +1

48
UNPKPTR
49
50

JSR INCUNPK

BNE ADVANCE

51 *-----------------

;we haven't, inc

;loop back, always

52 * Found a OLE, send the right number of blanks

102
103
104
105
106
107
108

;and now we'll subtrac
UNPKPTR ;lo-byte ...
i<FILEUNPK
LENUNPK
UNPKPTR+l ; ... hi -byte
t>FILEUNPK
LENUNPK+l

109
110
111
112

PLA ;we got here from inside a subrtn 41
PLA ; so cancel return address 42 ADVANCE
RTS ;The End

113 *----------------
114 * vars; in real life, these would have meaning

43
44
45
46 DONE?
47 115 *----------------

116 48

$2F37 ;whatever: last item addr 49
; in packed file, + 1 50

117 EOFPK DA
118

LD
CPR
BZ
ST
LD
CPR
BNZ
BR

@Rl ;look at a byte of FILEJ
R4 ; is it OLE?
FEEDBLNK ; => yes, go handle
@R2 ;no, just feed to FILEUNJ
Rl ; consider ptr to FILEPK
R3 ;is it EOFPK?
ADVANCE ;=> no, go do it again
DONE ; => yes, go finish UJ

119 LENUNPK DA $0000 ;result:len of unpked file 51 *----------------

Listing 3

1 ********************************

2 * *
3 * SAME TASK INVOLVING 16-BIT *
4 * OPERATIONS, USING SWEET16 *
5 * *
6 ********************************
7

8 * WARNING: this in NOT a complete program!
9 *

10
11 FILEPK
12 FILEUNPK
13 SW16
14
15
16
17

Do NOT try to enter and run it!

EQU
EQU
EQU

sw
ORG

$2000 ;strt of pckd file in mem
$4000 ;where unpacked file goes
$300 ; (or wherever Sweet16 is)

;Sweetl6 will be used below
$8000

18 *-----------------
19 * Call the Sweet16 interpreter
20 *·----------------
21
22 UNPACK
23

JSR SW16

24 *-----------------
25 * Initialise registers
26 *-----------------
27

;start Sweetl6 code

52 * Found a OLE, send the right number of blanks
53 *
54
55 FEEDBLNK LD
56 ST
57 LD
58 ONEBLNK ST
59 OCR
60 BNZ
61 BR
62
63
64 *

@Rl ;get i of blanks to fe•
R6 ;use it as index
R5 ;SPACE
@R2 ;send it to FILEUNPK
R6 ;decrement index
ONEBLNK; if not done, send anoth•
DONE? ;finished sending blank;

; go see if we've rchd Ec

65 *Finish,LENUNPK:=R2(ptr 2 unpk'd fil)-FILEUNPK
66 * (since R2 was incremented by last store)
67 *----------------
68
69 DONE
70
71
72
73
74
75

LD
SUB
SET
STD
RTN
RTS

76 *-------------

R2
R7 ;right answer now in RO
R8,LENUNPK ; (point to LENUNPK)
@R8 ;give answer to LENUNJ

;leave Sweetl6
;The End

77 * vars; in real life, these would have meaning
78 *---------------
79
80 EOFPK DA
81 LENUNPK DA

$2F37 ; (or whatever)
$0000 ;result, length of unpack•

;file

28
29
30
31
32
33
34
35
36
37

SET
SET
LD

Rl,FILEPK ;rl will pt to pckd file
R2,FILEUNPK;r2 pts to unpacked file

R2
ST
SET
LDD
ST
SET
SET

R7 ;save address in R7 too
R8,EOFPK ;pt to variable EOFPK
@R8 ;get value (R8 just temp)
R3 ;r3 will hold value EOFPK
R4,$00FF ;r4 holds OLE
R5,$0020 ;r5 holds SPACE

38 *----------------
39 * Run through FILEPK, looking for DLE=$FF
40 *----------------

KAT will sell no drive
before it's time ...
KAT will not ship a hard drive without first:

• Conferring with you about your entire system and setting the drive's interleave so as to insure optimal
preformance for you.
• Discussing the various partioning options and then setting them up to fit your specifications.
• Depositing 20 megabytes of freeware, shareware, the latest system software, and all sorts ofbonus goodies
on the drive.
• Testing the drive for 24 hours before shipping it out.

KAT drives come in industrial-quality cases that have 60 watt power supplies (115-230 volts), cooling fans,
two 50 pin connectors and room for another half-height drive or tape back-up unit. We also include a 6ft. SCSI
cable to attach to your SCSI card. You get all of this plus a one-year warranty on parts and labor!

SB 48 Seagate 48 meg 40ms
SB 85 Seagate 85 meg 28ms
SB 105 Quantum 105 meg 12 ms

$549.99
$698.99
$849.99

Looking for an even hotter system? Call and ask for a quote on our 170, 300, & 600 megabyte Quantum drives!

So ya wanna build yer own? Let KAT provide you with the finest parts available ...

SB Case 2 HH Drives 7w 5h 16d
ZF Case 1 HH Drive lOw 3h 12d
48 meg liD Seagate 40 ms 3.5" SCSI
85 meg liD Seagate 28 ms 5.25" SCSI
105 meg liD Quantum 12 ms 3.5" SCSI

$139.99
$169.99
$349.99
$469.99
$669.99

T-60 Tape Teac 60 meg SCSI
with hard drive

3.5" to 5.25" Frame
Cable 25 pin to 50 pin 6 ft.

50 pin to 50 pin 6 ft.

Programmers! Check our prices on your favorite
development packages and accessories ...
Byte Works Roger Wagner Publishing
Orca C $89.99 Hyperstudio $94.99
Orca M $44.99 Macromate $37.99
Orca Pascal $89.99
Orca Disassembler$34.99 Stone Edge Technologies

DB Master Pro $219.99
Other software and accessories:

$449.99 .
$424.99
$ 12.50
$ 19.99
$ 19.99

Vitesse, Inc. Quickie, terrific hand scanner (400 dpi, 16 grays)$249 .99
Excorciser, virus detection system$ 29.95
Renaissance, hard disk optimizer $ 34.95
Guardian, program selector and disk utilities
$34.95

Computer Peripherals
ViVa24, 2400 baud, 100% Hayes compatible modem
(comes with a FIVE YEAR Warranty) $139.99

Applied Eng. Transwarp GS $289.99 1 meg SIMMs 80 ns $89.99
Keytronic 105 Key ADB Keybrd $139.99 1 meg X 1 80 ns 8/$79.99

Call the KAT at (913) 642-4611 or write: KAT, 8423 W 89th St, Overland Park, KS 66212-3039

·······················~ • • llr·~ •• ·~ ••• llrllr• •• ·~ ·~ ••
~ ~ .•.....•••.........•..•.
~ r . -~~~~~ .. llrllr~~~~llr·~ ·~· •

Illusions of Motion, Part II
by Steven Lepisto

(Editor: This is the second in an extended semi-regular
series on Ilgs animation. Last time (March '90), Steve
provided a "core" animation demo which he will modify
with each.new article.)

Last time, I presented a program that moved two images
around the super hires screen. There was no back
ground image, only blackness, and the objects inter
fered with each other when one passed over the other.
But they were quick in their motions. This time, I am
going to present the concepts of masks, background
buffering, and shadowing. These techniques, when
combined, will give us a more flexible, if somewhat
slower. system of animation. That is always the trade
off: more flexibility generally means slower execution.
However, when we can move an image across a multi
colored background without disturbing that back
ground, perhaps the trade-off isn't quite so bad.

The two principle components of moving an image
across a complex background are the concept of trans
parency and the concept of preservation ofbackground.
Taken together, it is possible to move an image across
a complex background without disturbing either it or
the image.

The Concept of Transparency

Transparency in an image is that part of the image that
allows the background to show through (the way a
window allows the outside to show through the wall).
Transparency can be thought of as a "hole" in the image.
So how can we put holes in images?

One way is to examine each pixel of the image as we plug
it to the screen. If the pixel is to be transparent then
don't put it on the screen,leaving the background alone.
This method isn't all that fast but it's advantage is it
saves the memory used by masks, which is the next
method to talk about in making holes.

A mask is essentially a filter that allows certain areas of
an image to be treated as transparent. It is combined
with the image itself using the AND function. You then
use the OR function to add the image to the back
ground. ORing requires the transparent colors to be set
to 0, otherwise the process will change the colors that
are to shine through the transparent areas. The AND
function gives us the ability to tum the transparent
colors to 0.

The steps for putting the image into a background using
a mask are:

1) Punch a hole in the background where the image will
go. Doing this insures the bits in the image aren't
influenced by the bits in the background.

2) Combine the image and mask to create a bit image
with O's in the places where the image is considered
transparent. This way the bits in the background aren't
influenced by the transparent bits in the image.

3) Add the combined image and mask data to the
background using the OR function.

That's it. Here is a simple code fragment that shows the
above steps.

lda
eor
and
sta
lda
and

mask ;step 1: punch hole in backgrounc
tSffff
background
temp
image
mask

;step 2: combine image and mask

ora temp ;step 3: add image and mask to b
sta background

To punch a hole in the background (that is, set to 0 all
the areas in which the image will go). you need a
"negative" of the mask: you are cutting a hole in the

background where the image will be but you want to
leave the background alone where the transparent
areas in the image are. This is the exact opposite ofhow
you want the mask to be applied to the image. So you
create a negative of the mask by Exclusive ORing it with
a pattem with all bits set to 1 (i.e., $tnn. You then AND
the negative mask with the background and save the
result off.

Combining the normal mask with the image will insure
that all areas that are transparent are set to O's.

To add the masked image to the background, take the
masked image and OR it into the cut out background
then store the result back in the background picture. All
the 0 parts of the image will contain the background and
all the 0 parts ofthe background will contain the image.
Neat!

As a faster altemative, if the image already has O's
where you want the transparency to be. pre-inverse (or
make negative before using) the mask then use the
following code fragment:

lda background
and mask
ora image
sta background

This is much shorter and definitely quicker because
there are fewer steps being taken. The only drawback to
this· approach is that color 0 (which is represented by a
nybble with all O's in it) can never be used in the images
except as a transparent color. Sometimes this can be a
serious drawback, but usually it isn't much of a prob
lem.

To get around the problem of losing the use of color 0 as
a color, the following technique can be used (the mask
is not made negative but is normal for the image):

lda image
eor background
and mask
eor background
sta background

Not much longer than the previous method and though
it's a little slower. it is more flexible. The new
PLOT_IMAGE routine uses this technique. The advan
tage of this method is when you make the mask for the

image, you can say that any color of the mask is
transparent. So if you create an image using color 6 as
the transparent color (for whatever reason) you can
create a mask that makes color 6 transparent and the
above code will work quite nicely.

And that is how to use a mask to create a transparent
color in an image.

The Concept of Preserving Background

Now. you may have been wondering how it is possible to
erase the image once it has been added to the back
ground using masks and ORing. That's a very good
question. There are a couple of techniques that can be
used. One is to keep a virgin copy of the background
picture somewhere safe and whenever you need to erase
something from the background being used, you copy
from the virgin background those areas needing restor
ing. The advantage of this is it is faster than the next
technique I'm going to describe. The disadvantage is it
uses more memory-a lot more memory.

Another technique, and the one in use in the example
program, is to preserve only enough background where
the image will go before plotting the image. Then all you
have to do is copy that buffered piece of background
back from where you got it and the image will be erased.
This way you only need to save and restore a rectangle
the same size as the image being plotted which can save
memory (over buffering the entire background). espe
cially if you only have a few objects to deal with.
However, it does add a step to the whole process of
animation whicli can slow things down.

A third technique which is generally not very useful for
most animation chores these days is the use of Exclu
sive OR This technique provides a way of plotting an
image with transparent areas of color 0 and removing
that image from the background without needing to
buffer the background. Exclusive OR is a function that
will toggle bits on and off. If you do the same EOR
process twice in a row with the same data. the image will
be erased and the background restored to normal. This
is very fast technique with only one serious disadvan
tage: the colors in the image and background tend to
combine in really weird ways. However, EOR can be
used for interesting effects or in areas where the back
ground is mono-colored and color conflict won't arise.

How To Use Transparency and Buffered
Background Without Flicker

Okay, to bring the whole process of transparency and
buffering together. here is a simple algorithm for anima
tion:

1) buffer (save) background where image will go
2) draw image into the background using a mask
3) erase the image by copying the buffered background
on top of image
4) move the image
5) repeat steps 1 to 4 .

There is only one problem with the above: it takes time
to buffer and move an object and you will notice that
there are moving and buffering steps between the erase
and draw procedures. This means that the erase proce
dure will cause flicker because the time taken for the
move and buffer procedures causes the eye to see the
erasing process. How to cope with this?

We need a way of erasing and redrawing that isn't visible
to the user ... specifically, a way of drawing and erasing
on an invisible screen while another is visible then with
the flip of a switch show the new screen while drawing
and erasing on the first screen, which is now invisible.
Back and forth, back and forth, always working on the
invisible screen. Because the eye would never see the
erasing of the image, there would be no flicker. This
technique is called page-flipping and we can't do it in
super hires on the Ilgs.

However, there is a way to sort of page-flip. This
technique takes advantage of a hardware feature of the
IIgs called shadowing. By using shadowing, a byte put
in one area of memory will automatically be copied or
shadowed to another area of memory. The super hires
screen at address $e 12000 is where the video circuitry
gets the information to display the screen on the video
monitor. The memory at $012000 is shadowed onto the
memory at $e12000 but isn't directly connected to the
video circuitry. When you write a byte to the memory
starting at $012000 with shadowing turned on, it will
automatically be copied to a corresponding point in the
memory at $e12000. Since it is possible to tum off this
shadowing function, you can write to the memory at
$012000 and not have it show up at $e 12000. This gives
us the invisible screen to draw and erase on.

Now, just by turning on shadowing doesn't cause the

shires screen at $012000 to magically appear at
$e 12000. Only when data is written to $012000 while
the shadowing is on will it appear at $e12000. So a
simple solution is to just read from the memory at
$012000 and immediately write it back to the same
point. Do this with the shadowing turned on and the
image is made visible.

This is a lot slower than true page-flipping where you
would simply hit a switch and the hardware would
instantly start showing the second page. However,
shadowing does provide a means of doing complex,
flicker-free animation at a reasonable speed. One nice
thing about shadowing is we take advantage of the
higher memory speed in the shadowed memory (the
memory at $e 12000 always runs at 1 MHz while the
shadowed memory runs at over twice that speed).

So the steps for flicker-free animation with shadowing
are:

1) tum shadowing off
2) buffer background from the shadowed screen where
image will go
3) draw image into the background on the shadowed
screen using a mask
4) tum shadowing on
5) copy the portion of the shadowed screen where the
image is to itself
6) tum shadowing off
7) erase the image by copying the buffered background
back to the shadowed screen
8)movetheimage
9) repeat steps 2 to 8 .

True, this is more complex than the previous method,
but it opens up the door to bunches and bunches of
complex animation.

Updating the Experimental Program

Here is a list of changes to the program printed last time
which will add support for masks and shadowing.

1) Make the changes indicated in listing one. The lines
to change are marked; the additional lines are there to
position the changes correctly.

2) Enter the new routines given in listing two.

3) Enter the mask and buffer data in listing three.

4) Finally, replace the old PLOT_IMAGE routine with the
one in listing four.

Don't forget to create a new macro file for the finished
source code.

In Conclusion

Animation is a complex process on a computer, even in
its simplest form. However. with perseverance and
experimentation, you too can create Illusions of Motion.

Things To Experiment With

1) In Plot_Setup, comment out the line "moveword
#$0l;shires_adrs+2" to see the action without the ef
fects of shadowing. That is flicker. (Note, the program
supplied on disk has different instructions for showing
flicker. See the comments in the source code at the
beginning of the program.)

2) Rewrite the heart of the Plot_Image code to use the
plotting idea of:

lda
and
o r a
sta

background
mask
image
background

Note that the masks will have to be inversed by hand
(change all O's to F's and all F's toO's).

3) The Show _Image routine can be optimized a bit by
eliminating the addition to screen_ptr at the end of the
loop. See if you can work it out.

4) For the ambitious types, this program still won't work
properly with velocities greater than 2. See if you can
figure out where the problem lies (hint, the problem is
in only one routine).

There are always different ways to apply the techniques
I've described. The program code I wrote for this series
isn't optimized for high speed animation. In fact, there
are techniques I haven't described that are even faster
than those given here. However, I have striven for ease
of understanding over speed of execution {Editor: for
now). The code I gave here is quite good for many
animation projects, however. Feel free to play with it,
change it, use it as is. I am by no means the only person

with knowledge of computer animation- I'm always
learning something new about it!

Listing one:

In the following source code fragments, add the lines
marked with a + at the end. Some of the routines have
been truncated. This is indicated by" ". {Editor: Steve
has reprinted some portions of the original animation
engine here for continuity. You only need to add those
lines marked with a '+').

dum $00

de ref _ptr ds 4
rowadrs table ds 4
screen - ptr ds 4
image_ptr ds 4
mask _ptr ds 4
buffer ptr ds 4

dend

image_height ds MAXIMAGES*2
image_width ds MAXIMAGES*2
image_bytewidth ds MAXIMAGES*2
image_adrs ds MAXIMAGES*4

mask adrs ds MAXIMAGES*4
buffer adrs ds MAXIMAGES*4

Animate js r
jsr
jsr
j sr
j sr

:1 js r
jsr
j sr
jsr
lda
jsr
jsr
bee
rts

draw _images

lda
sta

stz

in it - i mages
in it boundaries
shadow on
make an image

- -
shadowoff
draw _images
show - images
erase images -
move images
#1
paus e_ a_ mo ment
read_key
:1

image_ index

image_adrs,y
image_ptr

+
+

+

+

+
+
+

+
+

lda image_adrs+2,y
sta image_ptr+2
lda mask adrs,y
sta mask - ptr
lda mask - adrs+2,y
sta mask _ptr+2
lda buffer_ adrs,y
sta buffer_ptr
lda buffer adrs+2,y
sta buffer_ptr+2
jsr buffer_image
jsr plot_image
inc image_ index
lda image_ index
cmp number of - images
bee :1
rts

init_images ldx #0

lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
inx
inx
cpx
bee
txa
lsr
sta
rts

def_image,y
image_adrs,y
def_image+2,y
image_adrs+2,y
def_mask,y
mask_adrs,y
def_mask+2,y
mask_adrs+2,y
def_buffer,y
buffer adrs,y
def_buffer+2,y
buffer adrs+2,y

#MAXIMAGES*2
:1

number of_images

def_height da 15,15

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+

def image adrl basic image_1,basic_image_2
def=mask adrl basic_mask_1,basic mask 2
def buffer adrl buffer1,buffer2

plot_setup -GetPortLoc #shireslocinfo
-GetAddress #1
pulllong rowadrs table
moveword #$0J;shires_adrs+2
rts

+
+

+

dostartup

-QDStartUp tool_dpage;#$00;#0;ProgramiD
bcs :x
lda tool - dpage
clc
a de #$300
sta tool_dpage

+
* Allocate shadow screen memory for our use. +

+
-NewHandle

pla
#32768;PrivateiD;#$c013;#$012000

pla
bcs :x
jsr plot_setup

Listing two:

Add these entire routines to the code.

* Disable shadowing of the shadow screen.

shadow_register = $e0c035

ShadowOff ldal shadow_register
ora #%1000
stal shadow_register
rts

* Enable shadowing of the shadow screen.

ShadowOn ldal
and
stal
rts

shadow_register
#%1111_1111 1111 0111
shadow_register

*-------------------------------

* Draws a multi-color background picture on the
shadow
* screen on which to move the images.

make an image -GetPortLoc #savelocinfo
-SetPortLoc #shireslocinfo

:1
stz
lda
asl
tax
phx

mai_loop_index
mai_loop_index

-SetSolidPenPat rect_color,x
pla
asl
asl

+
+

clc
a de
tax
lda
a de
ph a
phx

t<rectangles

t"rectangles
to

PaintRect
inc mai_loop_index
lda mai_loop_index
cmp f6
bee :1
-SetPortLoc tsavelocinfo
rts

mai_loop_index ds 2

rect_color da
rectangles da

da
da
da
da
da

2,6,6,8,12,7
0,0,200,320
10,10,100,100
10,220,100,310
130,20,180,300
80,140,120,180
178,260,190,270

* Used to save original port locinfo

saveloci nfo ds 16

* Copy the regions in which the images were drawn
* themselves with shadowing turned on. This causes
* images to become visible on the shires screen.

show_images stz image_index
:1 lda image_index

asl
tax
asl
tay
lda
sta
lda
sta
lda
sta
lda
sta
jsr
inc
lda
cmp
bee
rts

image_bytewidth,x
plot_bytewidth
image_height,x
plot_ height
xposit i on,x
plot_xpos
yposition,x
plot_ypos
show_image
image_index
image_index
number_of_images
:1

* Erase images on the shadow screen by copying th
* contents of the buffers which hold the bkground
* under the image . This loop must be reverse of
* drawing loop else overlapping images wouldn't b
* properly erased.

erase_images lda number of_images
beq :x ;nothing to show
dec
sta image_ index

:1 lda index image_
asl
tax
asl
tay
lda image_bytewidth,x
sta plot_ bytewidth
lda image_height ,x
sta plot_height
lda xposition,x
sta plot _xpos
lda yposition,x
sta plot _ypo s
lda buffer_adrs,y
sta buffer_ptr
lda buffer_adrs+2,y
sta buffer_ptr+2
jsr erase _image
dec image_ index
bpl :1

:x rts

* Buffer background under image in preparation of
* drawing image . Buffered background is used t o
* erase the image later on.

bu f fer_image lda plot_ypo s
asl ;Y - > index
tay
lda plot_xpo s
lsr
clc

; pixels t o bytes

adc [rowadrs_table],y
sta screen_ptr
lda shires adrs+2
sta scr een_ ptr+2
ldx p l ot_height

:row_loop ldy tO
:byte_loop lda [screen_ptr],y

sta [buffer_ptr],y
i ny
i ny
cpy plot_byt e width
b e e :byte_loop
lda buffer_ptr
clc
adc plot_bytewidth

sta buffer_ptr
bee :1
inc buffer_ptr+2

:1 lda screen_ptr
clc
a de shires_byte_width
sta screen_ptr
dex
bne :row_loop
rts

* Copy a rectangle of shadow screen to itself wit
* shadowing turned on. This causes the region
where
* image was drawn to become visible on the screen.

show_image jsr shadowon
lda plot_ypos
asl
tay
lda plot_xpos

;Y -> index

;pixels to bytes lsr
clc
a de [rowadrs_table] ,y
sta screen_ptr
lda shires adrs+2
sta screen_ptr+2
ldx plot_height

:row_loop ldy tO
:byte_loop lda [screen_ptr],y

sta [screen_ptr] ,'y
iny
iny
cpy plot_bytewidth
bee :byte_loop
lda screen_ptr
clc
adc shires_byte_width
sta screen_ptr
dex
bne : row _loop
jsr shadowoff
rts

*------------------------------
* Erase an image from shadow screen by copying th
* contents of a buffer onto it . The buffer holds
* background under the image.

erase_image lda plot_ypos
asl ;Y -> index
tay
lda plot_xpos
lsr
clc

;pixels to bytes

adc [rowadrs_table],y
sta screen_ptr
lda shires adrs+2
sta screen_ptr+2
ldx plot_height

:row_loop ldy to
:byte_loop lda [buffer_ptr] ,y

sta [screen_ptr],y
iny
iny
cpy plot_bytewidth

:1

bee
lda
clc
a de
sta
bee
inc
lda
clc
a de
sta
dex
bne
rts

Listing three:

:byte_loop
buffer_ptr

plot_bytewidth
buffer_ptr
:1
buffer_ptr+2
screen_ptr

shires_byte_width
screen_ptr

:row_loop

Add these masks and buffers to the end of the pro
gram.

basic mask 1 hex 0000000000000000 ;16 O's
hex 0000000000000000
hex OOOffffffffffOOO
hex OOffffffffffffOO
hex OOfffffOOfffffOO
hex OOffffOOOOffffOO
hex OOfffOOOOOOfffOO
hex OOffOOOOOOOOffOO
hex OOfffOOOOOOfffOO
hex OOffffOOOOffffOO
hex OOfffffOOfffffOO
hex OOffffffffffffOO
hex OOOffffffffffOOO
hex 0000000000000000
hex 0000000000000000

basic mask 2 hex 0000000000000000
hex 0000000000000000
hex OOOOOOOffOOOOOOO
hex OOOOOOffffOOOOOO
hex OOOOOffffffOOOOO
hex OOOOffffffffOOOO

hex OOOffffffffffOOO
hex OOffffffffffffOO

hex OOOffffffffffOOO
hex OOOOffffffffOOOO
hex OOOOOffffffOOOOO
hex OOOOOOffffOOOOOO
hex OOOOOOOffOOOOOOO
hex 0000000000000000
hex 0000000000000000

* Enough buffer space for each image above
buffer1 ds 8*15
buffer2 ds 8*15

Listing four:

Replace the old plot_image routine with this one.

plot_image lda plot_ypos
asl
tay
lda
lsr
clc

plot_xpos

;Y -> index

;pixels to bytes

adc [rowadrs_table],y
sta screen_ptr
lda shires adrs+2
sta screen_ptr+2
ldx plot_height

:row_loop ldy tO

eor [screen_ptr], y
and [mask _ptr] ,y
eor [screen_ptr], y
sta [screen_ptr] , y
iny
iny
cpy plot_bytewidth
bee :byte_loop
lda image_ptr
clc
a de plot_bytewidth
sta image_ptr
bee :1
inc image_ptr+2

:1 lda mask_ptr
clc
a de plot_bytewidth
sta mask_ptr
bee :2

inc mask_ptr+2
:2 lda screen_ptr

clc
a de shires width _byte_
sta screen_ptr
dex
bne :row_loop
rts

:byte_loop lda [image_ptr],y $
•••••••••••••••••••••••~ Bs1·ca11 Aple ft ~·•••••••••••••••••••••• .. ~.~~~r~r• ·~~~~~~r~r~r~r .. ~ - ::!!a

1111
_Y_P_.s .. o~-..... r -~~ .. ~~~~~~~~~~~r~rm

Parms Away: Passing Parameters
to Subroutines
by Robert Stong

In some high level computer languages, such as FOR
TRAN and Pascal, there is a technique known as
passing parameters to a subroutine. This technique
makes subroutines a much more powerful tool.

As an illustration, you can write a general subroutine
which sorts an array X consisting ofN elements. Then,
in your program, with parameter passing, you can sort
an array
A with B elements by specifying that X is to be A and N

is to be B. Without parameter passing available, one
must either write the routine using the variables A and
B or must
move the contents of the array A to the array X so they
can be sorted. The lack of passing ability makes the
subroutine much less convenient.

Fortunately, Applesoft BASIC has a nice feature that
will let you pass parameters to a subroutine. Many
writers describe this feature as a flaw. The point is that

Applesoft BASIC will let you use long variable names,
but only uses the first two letters ofthe name to identify
the variable.

The way to use this feature is to write your subroutine
using long variable names. When you are ready to use
the routine with given parameters, it is only necessary
to change the first two letters of each variable name.
This can be accomplished quite simply by using a small
machine language routine that recognizes long variable
names and resets their first two letters. Effectively, the
machine language routine is rewriting your subroutine
using the variable names you have specified in your
parameter list. Because the subroutine uses long
names, variables can be identified by the last letters of
their names, and the process can be repeated with other
parameters.

To illustrate this method, I am including a demonstra
tion program which has two subroutines. One subrou
tine creates a general menu from which the user selects
options. The other subroutine forms the product oftwo
matrices. These are quite typical general subroutines.
The demonstration makes repeated use of these rou
tines with different parameters.

Entering the program

If you have an assembler, enter the source code in
Listing 1 and save the assembled object code as PAR
AMS. If you don't have an assembler, use the hex codes
from Listing 2 and save the file with the command

BSAVE PARAMS, A$6000, L$E2

Enter the Applesoft program in Listing 3 and save it
with the command

SAVE PAR.DEMO

Using Params with your programs

Obviously, if you want to use this machine language
routine to do parameter passing in your own program,
you need to know some details about it.

PARAMS is completely relocatable. I chose to assemble
it at location $6000, but it can be loaded and run at any
location. It does use memory at location $300 as
workspace for manipulating variable names. If you are

using page 3 for other purposes, you will want to change
the location of TABLE (or change the hex 03's in
locations $602A, $60A7, $60B2, and $60B8 to some
other value, such as 61).

To use PARAMS, you write your Applesoft subroutine
just as you always do except that any variable name you
wish to use as a parameter must have at least three
characters.
PARAMS ignores the first two characters and resets
them based on your parameter list. All characters past
the first two are used as identifying information.

The instruction to invoke PARAMS has the format

CALL address, line number, line numbe r,
variable names.

The address is the load address of PARAMS (24576 if
one uses $6000). The two line numbers are the first and
last lines in which variable names will be changed. The
list of variable names, separated by commas, are the
new names desired within the line range. The order in
which the names are listed is irrelevant. and you need
only list a name if you want to change it.

Variable names for P ARAMS must include the array and
type identification. Thus ABXX, ABXX%, ABXX$,
ABXX(. ABXX%(); and ABXX$()are all treated as differ
ent variables: real, integer, string, and arrays of these.
If ABXX occurs in the variable list, PARAMS will change
all four-letter real variable names ending in XX to ABXX
in the chosen line range.

PARAMS will not change anything occuring after REM,
within quotation marks, or in a DATA statement.

PARAMS wiil change Applesoft function names. In the
expression FN ABC(X), Applesoft uses exactly the same
rules for identification as if ABC()was an array of real
variables. (Standard functions are tokenized so will not
change, but user defined functions can and will
change.) If you don't want to change a function name,
you must be sure its name does not end in the same
letters as are being used for any real array parameter.

WARNINGS

PARAMS accepts UV(), UV$, and UV% as valid variable
names with three characters. If these were used in a
parameter list, PARAMS will change all two-letter real

arrays, integers, or strings to the given two-letter name.
To avoid this, I would recommend always using names
with at least four characters.

PARAMS does change the way in which your program is
stored in memory. You should always be cautious when
using such programs. Be sure to SAVE your program
before you hm it. (If you had a syntax error PARAMS
might scramble your program.)

Using utilities which renumber an Applesoft program
will probably not work with PARAMS. Most such utili
ties will not recognize the line numbers in the CALL
statement. They would need to be changed manually.

Another system ...

In volume 6, number 11 of Nibble, there was a feature
article by H. Cern Kaner and John R. Vokey entitled
"Subroutine Master". They provided an elaborate pa
rameter passing system which was based on modifica
tion of the names stored in Apples oft variable space. The
article included a discussion of many points to consider
in such a system and the complications which arise.

While their system had some nice features that are not
available with this method (named subroutines and
local variables). I think you will find this system to be
utterly simple. It avoids many of the complications.

Listing 1: PARAMS Poker

10 FOR X = 0 TO 226
20 READ ML
30 POKE 8192 + X,ML
40 PRINT CHR$ (4)"BSAVE PARAMS.OBJ,A8192,L226"
99 END
10000 DATA 32, 190, 222, 32, 12, 218, 32, 26,

214, 165
10010 DATA 155, 133, 6, 165, 156, 133, 7, 32,

190, 222
10020 DATA 32, 12, 218, 230, 80, 144, 2, 230,

81, 32
10030 DATA 26, 214, 32, 190, 222, 162, 0, 32,

183, 0
10040 DATA 157, 0, 3, 32, 177, 0, 240, 7, 201'

44
10050 DATA 240, 3, 232, 208, 241, 134, 25, 224,

2, 176
10060 DATA 3, 76, 201' 222, 165, 6, 133, 8,

165, 7
10070 DATA 133, 9, 160, 3, 200, 177, 8, 208, 26

160
10080 DATA 0, 177, 8, 170, 200, 177, 8, 133, 9,

134
10090 DATA 8, 197, 156, 208, 233, 228, 155, 208

229, 32
10100 DATA 183, 0, 208, 184, 96, 201' 178, 240 ,

226 , 201
10110 DATA 131, 208, 11, 200, 177, 8, 240, 217,

201, 58
10120 DATA 208, 247, 240, 206, 201, 34, 208, 11

200, 177
10130 DATA 8, 240 , 202, 201, 34, 208, 24 7' 240,

191, 201
10140 DATA 65, 144, 187' 201' 91, 176, 183, 162

0, 200
10150 DATA 177, 8, 201, 91, 144, 35, 228, 25,

208, 171
10160 DATA 132, 26, 136, 177, 8, 221, 0, 3, 208

17
10170 DATA 202, 224, 1, 208, 243, 136, 173, 1,

3,
145

10180 DATA 8, 136, 173, 0, 3, 145, 8, 164, 26,
208

10190 DATA 140, 201, 65, 144, 3, 232, 208, 207'
201, 58

10200 DATA 176, 210, 201' 48, 176, 245, 201, 36
240, 4

10210 DATA 201' 37, 208, 4' 232, 200, 177, 8,
201, 40

10220 DATA 208, 190, 232, 200, 208, 186, 173

Listing 2: PARAMS Demo

100 PRINT CHR$ (4);"BLOAD PARAMS"
110 DIM MA$(3),C0$(5),AA(5,5) ,BB(5,5),CC(5,5)
120 READ MT$: FOR I 1 TO 3: READ MA$(!): NEXT

:MN = 3
130 READ CT$: FOR I

:CN = 5
1 TO 5: READ CO$(!): NEXT

140 CALL 24576,500,555,MTTT$,MNRR,MAXX$(,MSSS:
GOSUB 500

150 ON MS GOTO 160,210,400
160 CALL 24576,500,555,CTTT$,CNRR,COXX$(,CSSS:

GOSUB 500
170 GR : HOME : COLOR= CS
180 FOR I = 0 TO 39: HLIN 0,39 AT I: NEXT
190 VTAB 22: PRINT "PRESS ANY KEY";: GET A$
200 GOTO 140
210 TEXT : HOME : HTAB 15: PRINT "MATRIX DEMO"
220 VTAB 3: HTAB 5: PRINT "This program will

compute the": PRINT "powers of the matrix:"

230 PRINT HTAB 16: PRINT "I";: HTAB 24: PRINT 520 VTAB 22: PRINT "ARROWS OR NUMBER TO CHANGE"
"\" PRINT "<RETURN> TO SELECT"

240 FOR I= 1 TO 5: HTAB 16: PRINT "1";: HTAB 24: 525 VTAB 2 *I+ 11- MNRR: HTAB H: INVERSE :
PRINT "1": NEXT

250 HTAB 16: PRINT"\";: HTAB 24: PRINT "I"
260 FOR I = 1 TO 3: FOR J = 1 TO 3:AA(I,J)

= I): VTAB 5 + 2 * I: HTAB 16 + 2 * J: PRINT
AA(I,J): NEXT : NEXT

270 VTAB 14: PRINT "PRESS ANY KEY TO BEGIN
GET A$:T3 = 3:P = 1

280 HTAB 1: CALL - 868

(J >

'' · .. , .

290 VTAB 14: HTAB 10: PRINT "I";: HTAB 32: PRINT
"\"

300 FOR I= 1 TO 5: HTAB 10: PRINT "I";: HTAB 32:
PRINT "1": NEXT

310 HTAB 10: PRINT"\";: HTAB 32: PRINT "I":
PRINT

320 VTAB 24: PRINT "PRESS ANY KEY TO STOP";: POKE
- 16368,0

330 CALL
24576,600,625,BBXX(,AAYY(,AAZZ(,T3MM,T3NN,T3PP:
GOSUB 600

340 FOR I = 1 TO 3: VTAB 13 + 2 * I: FOR J = 1 TO
3: HTAB 7 + 6 * J: PRINT BB(I,J);: NEXT: NEXT :P
P + 1: VTAB 22: HTAB 19: PRINT P;"-th power": IF
PEEK (- 16384) > 127 GOTO 380

350 CALL 24576,600,625,CCXX(,BBYY(: GOSUB 600
360 FOR I = 1 TO 3: VTAB 13 + 2 * I: FOR J = 1 TO

3: HTAB 7 + 6 * J: PRINT CC(I,J);: NEXT: NEXT :P
P + 1: VTAB 22: HTAB 19: PRINT P;"-th power": IF
PEEK (- 16384) > 127 GOTO 380

370 CALL 24576,600,625,BBXX(,CCYY(: GOSUB 600:
GOTO 340

380 POKE - 16368,0: VTAB 24: HTAB 1: PRINT
"PRESS ANY KEY TO CONTINUE";: GET A$

390 GOTO 140
400 TEXT : HOME : END
410 DATA "PARAMETER PASSI NG DEMO","COLORED

SCREEN","MATRICES","QUIT"
420 DATA "SCREEN

COLORS","MAGENTA","BLUE","VIOLET","GREEN","GRAY"
491 REM MENU ROUTINE
492 REM LINES 500-555
493 REM ENTER TTTT$=TITLE LINE
4 94 REM RRRR=# OF MENU ITEMS
495 REM XXXX$(=MENU ITEMS
496 REM SSSS=SELECTION MADE
497 REM LOCAL: H, I,X
500 TEXT : HOME HTAB 21 - INT (LEN

2): PRINT .MTTT$
505 H = 3: FOR I

(MAXX$(I)) THEN H
510 NEXT :H 21 -

1 TO MNRR: IF H < 3 +
3 + LEN (MAXX$(I))

INT (H I 2)

(MTTT$)

LEN

515 FOR I = 1 TO MNRR: VTAB 2 * I + 11 - MNRR:
HTAB H: PRINT I;") ";MAXX$(I): NEXT :I = 1

I

PRINT I;") ";MAXX$(I);: NORMAL: POKE - 16368,0
530 X - PEEK (- 16384): IF X < 128 GOTO 530
535 POKE - 16368,0:X =X- 128
540 HTAB H: PRINT I;") ";MAXX$(I): IF X= 13 T.H

MSSS = I: RETURN
545 IF 48 < X AND X < 49 + MNRR THEN I = X - 48
550 I = I + (X = 10) - (X = 11): IF I < 1 OR I >

MNRR THEN I = (I > MNRR) + MNRR * (I < 1)
555 GOTO 525
591 REM MATRIX MULTIPLICATION
592 REM LINES 600-625
593 REM ENTER XXXX(=PRODUCT
594 REM MMMMxPPPP=ITS SIZE
595 REM YYYY(=FIRST FACTOR
596 REM NNNN=ITS COLUMNS
597 REM ZZZZ(=SECOND FACTOR
598 REM LOCAL: I,J,K
600 FOR I = 1 TO T3MM: FOR J = 1 TO T3PP
605 CCXX(I,J) = 0
610 FOR K = 1 TO T3NN
615 CCXX(I , J) = CCXX(I , J) + BBYY(I,K) * AAZZ(K,J
620 NEXT : NEXT : NEXT
625 RETURN

Ml. croDot just$ 29.95
plu' S2.50 S&ll

Just 2.5K in size, but more powerful than BASIC.SYSTEM.
Imagine doing BASIC overlays simply by specifying the file
name and the line number where you want to overlay. How
about loading an array of directory names at machine lan
guage speed. You get this and total control over ProDOS
that is impossible with BASIC.SYSTEM. Works with Pro
gram Writer ($42.45. Both for$59.95 + S&H). Love it or get
your money back! Inexpensive publishers' licenses.

- Dealer lnqu~neslnv,ted

Kitchen Sink Software, Inc
903 Knebworth Ct. Dept. 8
Westerville, OH 43081
(614) 891-2111

•••••••••••••••••••••uuuvJ ~TheMerl1'nMan1·ac ~JJ••••••••••••••••••••y
-~~ ·~.r.r• • .r.rm~~ .r.r• ·~ •• ~ -"""~~-----.;,...----'r . .r.r~ ~~~~~~~~~~-~

Making a List & Checking It Twice
by Steve Stephenson

So, you already know how to use the List Manager. Fine.
I'd like to show you a few ways to extend your list power.
In this article, I present two low-level 'hook' type rou
tines that are designed to show you how to customize
your lists. I've also thrown in a method to add a
professional touch to your programs. This bag of tricks
contains:

• A custom draw routine
• A custom compare routine
• A routine to detect double clicking

Note: These routines work equally well, whether you are
using regular controls or the new extended controls.

Drawing the Member

The List Manager will draw your list members for you,
provided they contain nothing but text in either pString
or cString format. For many lists, this is acceptable;
however, if you want something a little fancier, you will
need to provide a custom draw routine.

The procedure I use in CustomDraw consists of:

1) my standard opening;
2) an attempt to skip drawing if the member is clipped;
3) erasing and redrawing the member;
4) adding selection marking;
5) and my standard closing.

The attempt to skip drawing a member (step 2) is
adapted from GS Tech Note #74. It is designed primar
ily for scrolling, when the List Manager tries to redraw
all visible members. In reality, all members may not
need to be redrawn. The rect of the member to be drawn
is passed to the draw routine, and if no part of that rect
lies within the clip rect, you may skip drawing that
member. This speed up trick is not needed on a small
list like this sample, but, a list that has a complex draw
routine or a lot of members visible would benefit from it.

The heart of this drawing routine is the code that
actually puts something on the screen. The subroutine,
DrawMember, shows one way of putting out something
other than plain text. For this example, I use a combi
nation of an icon, a text string, and a column of
numbers.

The trickiest part of putting an icon in the list is getting
the bits in the displayMode word correct. Since the
easiest way to show a selected (highlighted) member is
to invert it, you must take both the normal and inverted
image into consideration when you decide the mode for
_Drawicon. With black and white icons. I have had the
best success with a display Mode of $0001 and the icon
mask identical to the image. My example uses color and
because of the way my mask and mode are setup, the
inverted icon reverses all colors. My advice is to experi
ment with dilTerent combinations of masks and modes.

By the way, if you want to use larger icons, it's a simple
matter of using a larger value for listMemHeight. While
you're at it, there's no reason to prevent you from
drawing multiple lines of text in the member, or using
a dilTerent font. or anything else that feels right.

The only other thing worth mentioning in Draw Member
is the method I use to get a column of numbers to line
up. Since all numbers take the same width, it would
seem that nothing special is needed to align them;
however. the space character is narrower than num
bers and if you use the Integer Math tool set, you will
inevitably get numbers with leading spaces. The easiest
way I've found to right-justify the column of digits is to
make all characters temporarily the same width with
_SetFontFlags. Be sure to retum to normal (propor
tional) afterward, or all following members will be drawn
in this style. This brings up an important point: the List
Manager does not save and restore any GraiPort stuff
for you, so be careful what you change when you do your
drawing.

The only thing needed to complete the custom drawing

is to display the member with the proper highlighting.
While this could be done during the actual drawing
phase. I chose to apply it afterward. Information about
whether the member should be shown inverted,
dimmed or normal is contained in the upper three bits
of the memFlag byte (see the comments in the listing
under the label DrawSelect).

Sorting a List in Any Order

The _SortList call will arrange your list in ascending
alphabetical order. As the List Manager knows nothing
about what's in your data structure. it simply starts
with the first byte and progresses through the data until
it either reaches a dilTerence or the end of the data. In
fact. your only choice when using this feature is
whether to use pStrings or cStrings (indicated in bit 0
of listType).

But with a custom compare routine. you can arrange
your list in forward or reverse order using any part of a
member's data. Don't be concemed with the sort algo
rithm that the List Manager uses; all you need to provide
is .a comparison routine that tells the List Manager
which of two members you want to appear first. The List
Manager passes you the pointers to the two members to
compare and expects your decision to be retumed in the
carry flag. The List Manager then arranges the pointers
in the array so they are in the order you want; when it
comes time to draw the list. the draw routine is passed
each pointer in tum from this array.

In the routine CustomCompare, I show a method of
sorting on either oftwo fields in the data structure. After
the standard opening. I convert (or dereference) the
addresses that the List Manager passes into actual
addresses of the member's data. Since I don't need the
pointer that was passed after conversion. I recycle the
direct page space by dereferencing it 'in place'.

The CompareSize routine simply indexes into the data
structure and compares the integers. If they are differ
ent. the carry is set for the List Manager. If they are the
same, I set it up to have the name field be the tie breaker.

The CompareName routine is fairly straightforward
string manipulation. The only non-obvious part is the
length checking at the top of the loop; this is done to
ensure that when all of a short string matches the
beginning of a longer string, the shorter string comes
first.

Reversing the sort order is trivial: just flip-flop the state
of the carry bit.

The Double Click Short Cut

By convention, double clicking may be used as a short
cut. When used with a list control, the short cut might
typically be linked to a default button. For example. in
the tool call _SFGetFile. double clicking one of the file
names in the list would produce the same effect as
single clicking followed by a click in the Open button.
While double- (and triple-) click information is now
retumed in the extended TaskMaster record, intro
duced with System Disk 5.0. my code is useful if your
application isn't able to use TaskMaster.

For a double click to exist. two consecutive clicks must
happen within the specified time limit and be close
enough in location to be considered in the same item.

Detecting a double click begins with a mouse down
event in the window. After tracking the click and making
sure it's a hit in the list. the routine DoubleClick takes
over. As the user may change the double click interval
at any time (via the control panel). I start off by getting
the latest setting. I divide the X coordinate by the height
of a list line to get the number of the line where the click
happened. I calculate the interval time bet ween this and
the previous click by using the system tick count from
the Event record. Now, armed with the time and location
information, I can determine whether this is a good
double click. The check against ListCount traps clicks
in the empty part of the list when there are fewer
members than the maximum that can be displayed.

After calling the short cut routine (which I leave up to
you). I clear the previous click time (forcing an impos
sibly large interval) to prevent the very next click from
successfully falling through the routine again.

*==
* Some list support r outines

*
* Copyright 1990 by Ariel Publishing

*
*
*

* and Steve Stephenson. Some rights r e served . *
*==

use l / t o ol . equates / el6.eve nt
use l/tool.equates / el6.window

VVindowPtr ext ;owning win dow

Event ext ;event record

*============~===============================

listView =
listMemHeight
lTop

ListRecord
:top dw
:left dw
:btm
:rt
List Count

dw
dw

dw
dw
dw
dw
adrl
adrl
dw
dw
adrl
adrl
adrl

5
= 10

10

lTop

;max t viewable
;height of one
;where to draw list

10
listView*listMemHeight+2+1Top
300

3
listView
%10
1

0

;total t in list
;t viewable
;pString, single
; start @ lt1
;list ctl handle

CustomDraw ;draw routine
listMemHeight ;member height
5 ;ptr array size
ListPointers ;ptr array
777 ;refcon
0 ;color

*=~~~=~==~~=-=====~-------~----~~=========~==

* Uses speedup routine from GS Tech Note f74
CustomDraw

* what

:d
:b
:rtl

phb
phk
plb
phd
tsc
ted

the dpage-in-stack
dum 1
ds 2
ds 1
ds 3

;save B
;reset B

;save D
;reset D

looks like:
;stk ptr
;saved D
;saved B

clip:rect
theEntry
clipHandle
listHandle adrl 0
memberPtr adrl 0
rectPtr adrl 0

;caller's rtn addr
;ptr to clip Rect
;addr or item data
;Clip Rgn handle
;ctl handle
;ptr to item
;ptr to item's Rect

dend

-GetClipHandle ;to clip region
PullLong clipHandle

ldy
lda
tax
lda
sta
stx

f2 ;deref handle
[clipHandle],y

[clipHandle)
clip:rect
clip:rect+2

*is this member's top below clip bottom?
lda [rectPtr]
dec
ldy
cmp
bcs

tregion+bottom
[clip:rect) ,y
NoD raw ; yes, not visible

* is this member's bottom above clip top?
ldy fbottom
lda [rectPtr),y
inc
ldy tregion+top
cmp [clip: rect), y
bee NoDraw yes, not visible

-EraseRect rectPtr ;visible, clr old

lda [memberPtr) ;deref the data
sta
ldy
lda
sta

ldy
lda
sta
iny
iny
lda
sta

jsr

theEntry
f2
[memberPtr], y
theEntry+2

fleft ;get Rect lt & btm
[rectPtr),y
memberRectLeft

[rectPtr],y ;btm
memberRectBtm

DrawMember

DrawSelect
*now fix it's selected appearance (as req)

ldy H
lda [memberPtr),y ;selected byte
and f%1110_0000 ;only valid bits:

* xxxO 0000 List Mgr's selection bits
* I I 1 ________ 1=inactive (dimmed, can't select)
* I I 1=disabled (dimmed, selectable)
* I 1=selected (inverted, if enabled)

* 000

* 100

active & enabled, but not selected
beq DrawDone ;leave normal

active & enabled, and selected?
cmp f%1000 0000
bne DrawDim no, then dim it
-InvertRect rectPtr ;yes, highlight
bra DrawDone

* 110, 010, 001, 011 = dim
DrawDim

-SetPenMask fDimMask
-EraseRect rectPtr
-SetPenMask fNormMask

NoD raw

DrawDone
pld

* pull B & the
plx
ply

;restore D
RTL addr off temporarily

; B & rtl bnk
; rtl addr

* pop the stuff that was passed to us
pla (listHandle)
pla
pla (memberPtr)
pla
pla (rectPtr)
pla

* now put the
phy

B & RTL addr back onto stk
rtl addr

phx
* and exit to caller

plb
rtl

memberRectLeft dw 0
memberRectBtm dw 0

; rtl bnk & B

;restore B
;back to List Mgr

DimMask hex 55,AA,55 , AA,55,AA,55,AA
NormMask hex FF,FF,FF,FF,FF,FF,FF,FF

*==
* Completely (re)draw this member/ item
DrawMember

pea
lda
asl

f Aicons ;icon addr bank
[theEntry] ;first is icon t

tax
lda
pha

Icons,x
;make index
;lookup icon addr

pea %0000 1111 0000 0000 ;mode
lda memberRectLeft
clc
a de
ph a

;move in some

lda memberRectBtm
sec ;center icon
sbc t8+1
ph a

Draw Icon

lda i34 ;tab over for text
jsr Tab To

lda theEntry+2
pha
lda theEntry
clc
a de t4 ;offset to string
ph a
_DrawString

ldy t2 ;offset to size

lda [theEntry),y
pha ;the integer
pushlong tsizeStr+1 ;result str
pushword tS ;max 5 digits
pushword tO

Int2Dec

lda U80
jsr TabTo

;unsigned
;convert to ascii

;move to size c o l

-SetFontFlags i2 ;set tabular mode
-DrawString tsizeStr
-setFontFlags tO ;reset proportional

rts

sizeStr str '00000k '

*==
* Move pen to draw text. Pass offset in Ac e .
TabTo

clc
a de
ph a
lda
dec
dec
ph a

;total from left
memberRectLeft

memberRec tBtm
; move up 2 for
; font base line

Move To
rts

*====~=======================================

Icons
da Disk:ram
da Disk:hard
da Disk:90mm

*
Disk:ram

dw $8000 ;color
dw 8*12/2 ; size of icon
dw 8 ;t lines down
dw 12 ;t nibbles accross
hex ffffOOOOOOOf
hex ffOObbbbbbOf
hex fObObObObOOf
hex fObbbbbbbbOf
hex fObObObObOOf
hex fObbbbbbbbOf
hex f0000066660f
hex ffffff66660f

:mask
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff

hex ffffffffffff
hex ffffffffffff

*
Disk:hard

dw $8000 ;color
dw 8*12/2
dw 8
dw 12
hex ffffffffffff
hex ffOOOOOOOOff
hex £0333333330£
hex £0333334430£
hex £0333333330£
hex £0333333330£
hex f£00000000££
hex ffffffffffff

:mask
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff

*
Disk:90mm

dw $8000 ;color
dw 8*12/2
dw 8
dw 12
hex fffOOOOOOOff
hex ffOfOfffOfOf
hex ffOfOfffOfOf
hex ffOfOOOOOfOf
hex ffOfffffffOf
hex ffOffOOOOfOf
hex ff00f0330f0f
hex fffOOOOOOOff

:mask
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff
hex ffffffffffff

*==
CustomCompare

phb
phk
plb
phd
tsc
ted

;save B
;reset B

;save D
;reset D

* what the dpage-in-stack looks like:

:d
:b
:rtl
rnemberA
rnemberB

dum 1 ; stk ptr
ds 2 ;saved D
ds 1 ;saved B
ds 3 ;caller's
adrl 0 ;ptr to A
adrl 0 ;ptr to B
dend

ldy t2 ;deref ptr
lda [rnemberA) to addr
tax
lda [rnemberA),y
sta rnemberA+2,s
txa
sta rnemberA, s
lda [memberB)
tax
lda [rnemberB),y
sta rnemberB+2,s
txa
sta memberB,s

lda CornpareMethod ;which?
bne CornpareName

rtn

*------------------------

t2 ;compare sizes
[rnemberAL y
[rnemberB I , y

addr

Compare Size
ldy
lda
cmp
bne CompareDone ;if sizes same,

;then use name
*------------------------
Compare Name

shortax
ldy t4 ;get str lengths

:loop

:sec

lda [rnemberA),y
sta lenA
lda [rnemberB),y
sta lenB

tya
sec
sbc t4
iny

lenB
:sec
lenA
:clc
[rnemberA), y
[rnemberB), y

;shorter first cmp
beq
cmp
beq
lda
crnp
beq
bra

:loop ;next char

sec
bra

:done

:done
;B first

:clc
:done

clc
long ax

CompareDone
pld

* pull B & the
plx
ply

* pop the stuff
pla
pla
pla
pla

;A first

;restore D
RTL addr off temporarily

; B & rtl bnk
; rtl addr

that was passed to us
(memberA)

(memberB)

* now put the B & RTL addr back onto stk
phy rtl addr
phx ; rtl bnk & B

* and exit to caller
plb ; restore B
rtl ;back to List

lenA dw 0
lenB dw 0
CompareMethod dw 0

Mgr

*==================~=========================

inContent ent

noHit

Track!t

pha ;spc
pushlong #theControl
pushlong Event+owhere
pushlong WindowPtr

FindControl
pla ;part hit
bne Track It

;none
rts

pha ;spc
pushlong Event+owhere
pushlong #- 1 ;use
pushlong theControl

TrackControl

action procs

pla
beq noHit

;in same part?
; no, strayed

AfterTrack
- GetCtlRefCon
pla

theControl
;item number
;throw away ply

cmp !f777
bne noHit

; in the list?

lda Event+owhere+2
sta thePoint+2
lda Event+owhere
sta thePoint

-GlobalToLocal #thePoint
ldx #0
lda thePoint
clc
sbc ListRecord+top
bmi

:divide sbc
bee

:gotit
!flistMemHeight
:gotit

:got it

Do Item

inx
bra :divide

stx currline

lda Event+owhen ;current 'when '
tax
sec
sbc
s t a
lda
tay
sbc
sta

stx
sty

ldx
cpx
stx
bne

cpx
bcs

lda
sec
sbc
lda

previous 'whe n' prevtime
interval ;= time between
Event+owhen+2

prevtime+2
interval+2

prevtime ;reset for
prevtime+2 ; next time

currline
prevline
prevline
Done

;in the same line?

; nope.

Li stCount ;in range ?
Done ; nope.

DblTime ;quick enough?

interval
Db1Time+2

sbc interval+2
bee

jsr
stz
stz
bra

Done nope.

Do Item
prevtime ;prevent respon s e
prevtime+2 ; to triple c l ick
Done

* * .. . insert your 'short cut' r outine here
DoubleClick * (to be called on double-click)

-GetDblTime ;get interval
pulllong DblTime Done

rts

currline dw 0
prevline dw 0
thePoint dw 0,0
theControl adrl 0
DblTime adrl 0
prevtime adrl 0
interval adrl 0
ThisWindow adrl 0

*==
* Array of pointers somewhere in memory
ListPointers

adrl iteml
dfb 0
adrl item2
dfb 0
adrl item3
dfb 0

;ptr to item
;List Mgr's byte

*==
* Individual item data somewhere in memory
ListMembers
iteml

dw 1 ;my icon t
dw $8000 ;size (in k)
str 'Hard Disk'

item2
dw 2
dw 800
str '3.5" Disk'

item3
dw 0
dw 256
str 'Ram Disk'

*==

Soft Thoughts:
Why I Wrote Super
Patch In BASIC

by John Link

John Link is the author of SuperPatch, the popular
Apple Works patch utility published by Q Labs. Section
4 of his manual for SuperPatch is entitled "Some
Thoughts". This article, reprinted from that section of
the manual with John's permission and slightly edited
to fit this magazine's format. explains why he wrote
SuperPatch 6.1 in plain old Applesoft BASIC rather
than assembly language.)

At one time, in a fit of masochism. I had decided to
rewrite SuperPatch in machine language. Machine
language is not only macho, it is also more compact
than BASIC. As I added more patches to SuperPatch,
the compactness of machine language became more
and more appealing. But really. what appealed to me
most was the "advancedness" of machine language.
You haven't arrived as a programmer until you write
something in ML, just like you cannot be accepted in
certain social circles until you say things in French. If
I had stuck with my decision, SuperPatch would be
much smaller than it is now. Obviously one reason for
the hypothetical compactness would be the compact
ness of ML itself. Another reason would be that much
of my time would have been devoted to writing code that
could handle all the things that BASIC does for Super
Patch, instead of developing new patches. Fewer
patches means less code. no matter what language is
used.

What came from this excursion into "advancedness" is
the realization that BASIC is as advanced as any other
computer language. The "B" in BASIC could easily
stand for "Best" instead of "Beginner's" in its full name:
Beginner's/Best All-purpose Symbolic Instruction
Code. BASIC is more "all-purpose" than any other
language for the Apple II, and seems perfectly suited to
a program like SuperPatch. What most SuperPatchers
want is a reliable and easily understood method of

applying their modifications to AppleWorks. BASIC is
very reliable, and the time I might have spent "reinvent
ing the wheel" went into making the interface easier to
understand and the program more thorough in its
ability to cope with all the possible software and hard
ware configurations used by AppleWorkers. My inter
face contains few "bells and whistles." You have to press
letter keys instead of moving an inverse menu bar up
and down the lists of patches. Inverse menu bars can
be programmed in BASIC, but, in BASIC, they are too
sluggish for my taste, and they eat up memory and code
rapidly. But, thanks to easily accessed BASIC com
mands, SuperPatch is thorough in its examination of
your AppleWorks disk, which seems far more impor
tant. While machine language executes much faster
than BASIC, the slowest part of SuperPatch is the
examination of your files to determinne the status of the
patch areas. ML would not accelerate this process to

Just Like the Big Boys

any noticeable extent.
Using BASIC opens SuperPatch itself to examination.
Those of you who are interested can easily follow the
logic of the program by simply listing the code. You can
also customize SP to suit yourself. if you want. Or, as
some have done, you can develop patches to Super..;
Patch. Most of the key areas contain REM statements
to guide those who have an interest in programming.
This kind of openness is simply not possible with
machine language, unless you do what Robert Lissner,
the creator of AppleWorks, did, and publish extensive
notes. Even then, BASIC, because of its nature as an
interpreted language, remains more open than any
other, and therefore more subject to the user's modifi
cation.

[SuperPatch 6.1 costs $39.95 and is available from Q
Labs, 1066 Maryland, Detroit, MI 48230, (313) 331-
0941.)

AppleWorks-Style Line Input
by Tom Hoover

It seems like whenever I write an assembly language
program, there's always a need for some type of "string
input" routine. For a long time, I wrote a separate
"custom" routine for each program, which was, obvi
ously, an inefficient way to program. Meanwhile, I had
fallen in love with Robert Lissner's AppleWorks input
routine, which features intuitive command keys and a
default input string. I finally got around to writing a
similar routine of my own that could be linked into any
program that I was writing. I present it to all of you in
the hope it can save someone else some work.

The GetStrroutine supports the same commands as the
Apple Works line editor. Although you can easily change
them if you don't like them, I suggest you keep them for
purposes of standardization. The commands are:

OA-E or Control - E toggle between insrt/ovrstrke cursors

OA-Delete
Delete
Escape
Return

delete the character under the c u rsor
delete the c haracter preceding the cursor
restore the default string
accept the e nt ire input line

GetStr is designed for use with the SO-column screen
and does not support wrap-around of the input line,
limiting you to an eighty-character input line (or less.
depending on screen placement). I haven't found either
of these limitations a problem in my applications, but
the routine could be enhanced to eliminate them.

To use the GetStr routine, your program needs to do
the following:

1. Place the "default" input string at InBuffer ($200)
in Pascal string format (with a leading length byte). If
you wish to have a "blank" default string, store a "0"
at InBuffer.

OA-Y or Cont rol -Y
Left Arrow
Right Arrow
OA-Left Arrow
OA-Right Arrow

delete from cursor to end of line 2. Set your desired horizontal and vertical cursor move t he cursor one space to t he left
move the cursor 1 space to right position (OurCH, CV).
move to the beginni ng of the input lin8. Place the maximum length of the input string in the
move to the end of the input line X register.

4. Place the desired prompt character into the Accumu-

lator.
5. JSR GetStr. The prompt character will be printed at
the current cursor co-ordinates (OurCH, CV), followed
immediately by the "default" string (if any). and allow
the user to edit the string.
6. The routine will retum the string at InBuffer, with a
leading length byte.

For an example of how to call GetStr, see the
GetStr.Demo program listing.

GetStr is well commented, so you shouldn't have any
problem figuring it out, but here's a rundown on how it
works.

Before entering the main loop, GetStr first displays the
default input string on the screen. It then calls GetKey
repeatedly until a Retum keypress is detected. GetKey
calls another routine called Key Handler, which actually
does most of the routine's work.

GetKey (along with FlashDelay) provides the flashing
insert or overstrike cursor, and performs the task of
getting a keystroke from the user. This keystroke is
then passed to KeyHandler. You can change the flash
rate of the cursor by changing the variable cFlash:
larger numbers result in slower flash rates. You can
also change the default cursor type by changing the
variable 'cCursor': set the high bit for insert, or clear it
for overstrike.

KeyHandler handles each keystroke by calling the
appropriate command routine or by storing it in the
buffer and displaying it on the screen. Key Handler uses
two lookup tables, one containing the value of the key
associated with a command, the other containing the
address (less one) of the routine that handles that
command. The address of the command is pushed onto
the stack and a "funny jump" is performed with an RTS,
an old 6502 trick that goes back to the original Apple II
Monitor.

I've also included two linker files (one for Merlin 8 and
one for Merlin 16 and 16+) that demonstrate how to link
GetStr into your program, which you'll need to do to run
the GetStr.Demo program. The Merlin 16 linker file
handles the assembly and linking of both GetStr and
GetStr.Demo. The Merlin 8 linker file must be loaded
into Merlin, assembled, and saved to disk as LINK. You
must then assemble GetStr and GetStr.Demo, then
type LINK $2000 "LINK" from the Merlin 8 command
mode. After saving the object file. you can change it to

a ~YS file. Notice that Merlin 16 makes the entire
process much simpler.

I hope you find GetStr useful. With it, you can easily
implement part of the standard AppleWorks user inter
face in your programs.

Listing 1

1 **
2 *
3 * GetStr Input Rtn w/ "AppleWorks" Cmd Keys
4 *
5 * Copyright 1990 by Tom Hoover
6 * All rights reserved

7 *
8 * You may use this rtn in your programs,
9 * as long as appropriate credit is given.

10 *
11 * This rtn inspired by "command line" editor
12 * in ApplWks.I've never found an input rtn i

13 * any other program that I liked as much as
14 * the one in AWks; so, I wrote one
15 * w/ a similar cmd set that I could include
16 * in any program. Thanks, Robert!
17 *
18 *** ** *
19
20
21
22

23
24
25
26
27
28 cv
29 BASL
30 OurCH
31 InBuffer

rel
dsk
XC

lst
tr
tr

32 InBuffer2 =

33 Key
34 Strobe
35 Pagel
36 Page2
37 OAKey
38 TabV
39 COut
40
41
42

;relocatable file
getstr.L
off ;remove if not using

Merlin 16+

off
on
adr

$25
$28
$57b
$200
$280
$c000
$cOlO
$c054
$c055
$c061
$fb5b
$fded

*==================================

43 *
44 * To use .. .

45 *
46 *
47 *
48 *
49 *
50 *

1. x - ma len of the desired input string
2. a -desired prompt character
3.If you want a "default" input str, place

at InBuffer ($200) in Pscal str form (w/
a length byte). If you want a "blank"

51 * default string, store a "0" at InBuffer.
52 * 4. The prompt will print at the current
53* cursor (OurCH,CV}, followed immediately
54 * by the "default" string (if any).
55 * 5. You can use the following at the prompt:
56 *
57 * oa-e -toggl between insrt/ovrstrike cursors
58 * ctrl-e -ditto
59 * oa-y
60 * ctrl-y
61 * left

-delete from cursor to end of line
-ditto
-move cursor one space to the left

62 * right -move cursor one space to the right
63 * oa-left -move to the beg. of the input line
64 * oa-right-move to the end of the input line
65 * oa-DEL -delete the char under the cursor
66 * DEL -delete the char preceeding cursor
67 * ESC -restore the "default" string
68 * RTN -accept the entire input line
69 *
70 *

· 71 *
72 *

6. The sub will return with the string at
InBuffer, with a prefixed length byte.

73 *--------------------------------
74
75
76

*==
77 *
78 * GetStr - the "Main" rtn. Call with
79 * X = the max input len, A = the desired
80 * cursor char. The prompt will show at the
81 * current cursor position (OurCH,CV). This
82 * assumes the 80 column screen and it does
83 *
84 *
85 *
86

not support "wrapping-around" the screen
edge, so placement of prompt is important
long str.A & X are trashed,Y is saved

87 GetStr
88
89
90
91
92
93
94
95
96
97

ent
sty
stx

jsr
inc

lda
sta

ldx
98 :loop lda

string to InBuffer2
99 sta

yTemp ;save Y in a temp var
MaxLength ;max len of input

PutChar ;Put prompt on screen
OurCH ;inc cursor to nxt pos

OurCH
chOrig ;save cursor coords

InBuffer
InBuffer,x ;move "default"

InBuffer2,x ;easily 2 restor

100
101
102
103
104

dex
bpl

jsr

105 :keyloop jsr
106
107
108
109
110
111
112 :done
113
114
115
116

cmp
beq

jsr
jmp

ldy
rts

;when user hits E
:loop

PrintBuffer;pr InBuffer to sc

Get Key
lt$8d
: done

KeyHandler
:key loop

yTemp

; is it a return?
;if yes, accept

;restore Y regist

*============
117 *
118 * KeyHandler - interprets each keystroke, a
119 * performs accordingly
120
121 KeyHandler
122 pha
123
124
125
126
127
128
129
130
131

cmp
bge

cmp
blt

and

132 :noConvert
133 sta
134 ldx
135
136 :keyloop inx
137 lda
138 beq
139

cmp
bne

;save char on stack

#$7b ; is
:noConvert

it an "open-apple
;nope

#$60 ;is it "lower-case
:noConvert ;nope

#%11011111;convert to upper

Char
#$ff

:KeyTable,x
:noCmd

Char
:keyloop

;save char
;initialize loop

;end of table

; found it yet?
;nope, so try aga

140
141
142
143
144
145
146
147
148
149
150

pla ;it's a command, so clean up
;stack

151
152
153
154

txa
asl
tax

lda

ph a
lda
ph a
rts

;transfer offset to A
;double it
;and transfer back to

:KeyAddrs+1,x ;do indirect jrr
by pushing
;the address on the sta

:KeyAddrs,x

;and then doing an

RTS
155
156
157 :KeyTable ;our routine looks in this table ...
158 db
159 db
160 db
161 db
162
163
164
165
166
167
168
169
170

db
db
db
db
db
db
db
db

'E'
$9f&"e"
'Y'
$9f&"y"
$8
$15
$88
$95
$7f
$ff
$9b
ltO

;oa- E
;ctrl-E
;oa-Y
;ctrl-Y
;oa-left
;oa-right
;left
;right
;oa-DEL
;DELete
;ESCape
;end of table

171 :KeyAddrs ;to find the address in this table
172 da :do oaE-1 ;oa-E
173 da :do oaE-1 ;ctrl-E
174 da :do oaY-1 ;oa-Y
175 da :do oaY-1 ;ctrl-Y
176 da :do_oaLeft-1 ;oa-left
177 da :do_oaRight-1 ;oa-right
178 da :do_Left-1 ;left
179 da :do_Right-1 ;right
180 da :do_oaDEL-1 ;oa-DELete
181 da :do DEL-l ;DELete
182 da :do ESC-1 ;ESC
183
184
185 *---------------
186
187 :noCmd

211
212
213
214
215
216
217
218 :append
219
220
221
222
223
224
225
226
227
228
229
230 :insert
231
232
233
234
235
236
237
238
239
240
241
242
243
244

inx
sta

jsr
inc
bne

cpx
bge

inx
stx
sta

jsr
inc
bne

inx
stx

ldx
cpx
beq

ph a

lda
tay
sec
sbc
tax

InBuffer,x ;put it in buffer

Put Char
OurCH
:99

MaxLength

;put it on screen

;always

:99 ;too long

InBuffer
InBuffer,x ;put it in buffer

Put Char
OurCH
:99

Temp

MaxLength

;put it on screen

;always

;current position

InBuffer ;can we insrt anothe
:99 ;nope, at MaxLength

InBuffer

Temp ;current position

188
189
190
191

pla
cmp
blt

lt$a0
:99

;get original character 245 *
246 :2

;less than a , so it's a 247
;ctrl char, and we don't 248
;want it 249

move everything over,
lda InBuffer,y

so that we
; can insert

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210 :over

ph a

lda
sec
sbc
tax

pla

cpx
beq

bit
bmi

250
251
252

OurCH ;curr pos minus original 253
;pos = current position 254

chOrig;in string 255

256
257
258
259

InBuffer ;are we at the end? 260
:append ;yes, append next char 261

262 :99
263

sta InBuffer+l,y ;our character
dey
dex
bpl :2

inc

pla
ldx
sta

jsr
inc

rts

InBuffer

Temp
InBuffer,x ;put it in buffer

PrintBuffer ;reprint input st
OurCH

cCursor ;ck insrt/ovrstrk mode 264 *----------------
:insert 265

266 :do oaE
267 lda cCursor

268
269
270
271

eor
sta
rts

t%10000000 ;invert hi-bit
cCursor

272 *----------------
273
274 :do oaY

lda
sec
sbc
sta

OurCH

chOrig

325
326
327
328
329
330
331
332

lda
sec
sbc
cmp
beq
inc
bne

333 :done oaDEL
334 rts
335

OurCH

chOrig
InBuffer ;end of the stri ng
: done oaDEL ;yes
OurCH
: do DEL ;always

275
276
277
278
279
280
281

jsr
rts

InBuffer ;truncate at curr pos
PrintBuffer ;print entire str 336 *---------------

337

282 *----------------
283
284 :do_oaRight

338 :do DEL
339 lda
340 sec
341 sbc

285 lda InBuffer ;goto end of input str 342 tax
286
287
288
289
290

clc
adc
sta
rts

chOrig
OurCH

291 *----------------
292
293 :do oaLeft

343
344
345
346
347
348

beq

cmp
beq

349 :delLoop lda

OurCH

chOrig ;find curr pos in s tri

: done DEL ;no mo chars to dele

InBuffer
: 1

InBuffer+l,x ; move everything
over to close

294 lda
295
296
297

sta
chOrig ; beginning of input str 350
OurCH

sta InBuffer,x ;up the space left
by the deleted

rts

298 *----------------
299
300 :do_Right

351
352
353
354
355 :1

inx
cpx

.bne

dec
301 lda OurCH ;crsr to the right by one 356
302
303
304
305
306
307

sec
sbc
cmp
beq
inc

;character
chOrig
InBuffer
:done_Right
OurCH

357
358
359
360

jsr
dec

361 :done DEL rts
362

InBuffer
: delLoop

InBuffer

; charact er

PrintBuffer
OurCH

308 :done_Right
309
310

rts
363 *-----------------
364
365 :do ESC

311 *---------------
312

366 ldx
367 :ESCloop lda

313 : do Left
314 1da
315 cmp
316 beq
317 dec
318
319 :done Left
320
321

rts

368
OurCH ;move cursor to left one 369
chOrig ;character 370
:done Left 371
OurCH 372

373
374
375
376

322 *-----------------
3 2 3

377
378
379 324 :do oaDEL

sta
dex
bpl

lda
sta

jsr

rts

InBuffer2 ;restore "default"
InBuffer2 ,x
InBuffer ,x

:ESCloop

chOrig
OurCH

PrintBuffer

380
*==

381 *
382 * PrintBuffer-prints contents of InBuffer, at
383 * chOrig. OurCH is preserved.
384
385 PrintBuffer
386 lda
387
388
389
390
391
392
393
394
395 :loop
396
397
398
399
400
401
402 :done
403
404
405
406
407
408
409
410
411

ph a
lda
sta

ldx
beq
ldx

inx
lda
jsr

cpx
bne

lda
jsr

pla
sta

rts

OurCH ;save curr pos on stack

chOrig;set OurCH to 1st char of
OurCH ;the input str scrn pos

InBuffer
:done;nothing to pr, then done
to

InBuffer,x
COut ;print InBuffer to scrn

InBuffer
:loop

J$ld
COut

OurCH

;clear EOL

;restore curr crsr pos

*==
412 *
413 * PutChar - this routine "puts" char in "A"
414 * on the scrn at the current cursor position.
415
416 PutChar
417 pha
418
419
420
421
422
423
424
425

lda
lsr
tay
bcs

sta

426 :mainpage pla
427
428
429
430
431
432

sta
sta

rts

;save char on stack

OurCH ;get horizontal pos

;put in main or aux mem?
:mainpage

Page2

(BASL) ,y
Pagel

;set to aux

;get char from stack
;PUT the character
;reset to main

433 *==
434 *

435 * PickChar - "picks" the char from screen
436 * at curr cursor pos, and returns it in "A"
437
438 PickChar
439 lda
440
441
442
443
444
445
446 :mainpage

lsr
tay
bcs

sta

447 lda
448
449
450
451
452
453

sta

rts

OurCH ;get horizontal pos

;pick from main or aux me
:mainpage

Page2

(BASL) ,y
Pagel

;set to aux

;PICK the charact
; reset to main

*===
454 *
455 * GetKey-this gives flashing crsr, & return
456 * a keystroke in "A". If char is "negative
457 *(bit 7 set), then OAkey was NOT pressed.
458 *the char is "positive" (hi-bit clr), then
459 * the open-apple key was pressed.
460
461 GetKey
462
463
4 64
465
466
467
468
4 69
470
471

jsr
sta
and

cmp
blt

cmp
bge

PickChar ;get char under cr
cChar
t%01111111 ;clear hi-bit

J$40
:storeit

J$60
:storeit

472
473

and t%00111111;remap so prts invers
;instead of MouseText

474
475 :storeit sta
476
477 :loop
478
479
480 :over
481
482

bit
bmi

lda
bne

483 :insert lda
484
485 :printit jsr
486
487
488
489

jsr
bmi

lda

cOver ;store overstrike cur

cCursor ;insert or overstrik
:insert

cOver
:print it

c!nsert

PutChar ;put on the scree
FlashDelay ;wait awhile
:got it

cChar

490
491
492
493
494 :gotit
495
496
497
498 :99
499

jsr
jsr
bpl

bit
bpl
and

bit

Put Char
FlashDelay
:loop

OAKey
:99
f%01111111 ;OA, so clear hi-bit

Strobe

1 ********************************

2 * *
3 * GetStr Input Routine DEMO *
4 * *
5 * Copyright 1990 by Torn Hoover *
6 * All rights reserved
7 *

*
*

8 ********************************
9

10
500 ph a

lda
jsr
pla

;save it 11
rel
dsk

;relocatable file
getstr.derno.L

501
502
503
504
505 rts
506

cChar
Put Char

12

;restore org to scrn 13
14
15
16
17

507 18 cv
508 19 BasL

* 20 OurCH
509 * 21 InBuffer

XC

lst
tr
tr

off ;remove if not Merlin 16

off
on
adr

510 * FlashDelay - provides delay for the flashing 22 InBuffer2 =

$25
$28
$57b
$200
$280
$c000
$cOlO
$c054
$c055
$c061
$fb5b
$fded

511 * cursor.
512
513 FlashDelay
514 ldy
515 ldx
516
517 :keyloop lda
518 brni
519
520
521
522
523
524
525
526 :99
527
528

dex
bne

dey
bne

rts

cFlash
tO

Key
:99

:keyloop

:keyloop

529 *===============================
530 *
531 * Various storage locations
532
533 MaxLength ds 1
534 Char ds 1

ds
ds
ds

1
1
1

23 Key
24 Strobe
25 Pagel
26 Page2
27 OAKey
28 TabV
29 COut
30
31 GetStr ext
32
33
34 *===============================
35 *
36 * Start
37
38
39
40
41
42
43
44
45
46
47 :loop
48
49

lda
jsr

lda
jsr
lda
sta

u
$c300

;turn on 80 column

flO ;put cursor where we wa
TabV
no
OurCH

string ;default str to Inbuff
string,x
InBuffer,x

535 Temp
536 yTernp
537 chOrig
538
539 cFlash db

50

f200;adjust the flash rate here 51

ldx
lda
sta
dex
bpl :loop

540 clnsert db
541 cOver db
542 cCursor db
543 cChar ds

;insert cursor
' ' ;overstrike cursor(inverse)
$80 ;insert=$80 overstrike=O
1 ;current char under crsr

52
53
54
55
56
57

ldx f25 ;maximum input length
lda f">" ;input prompt
jsr GetStr ;call which allows th

;user to edit the "default" inp
;string, or to enter their own

58 lda
59 jsr
60 lda
61 sta
62
63 ldy
64 :MsgLoop lda
65 beq
66
67 jsr
68 iny
69 bne
70
71 :Msg asc
72
73 :MsgDone
74 ldy
75 lda
76 sta
77
78
79
80
81
82 tay
83 :MsgLoop2 lda
84 beq

us ;move cursor down 5 lines 85
TabV 86 jsr COut ;print
no 87 iny
OurCH 88 bne :MsgLoop2

89
to 90 :Msg2Done
:Msg,y 91
:MsgDone 92 :keyLoop bit Key ;wait

93 bpl :keyLoop
COut ;print a msg 94 bit Strobe

95
:MsgLoop 96 jsr $bf00 ; quit

97 db $65
"You typed: "00 98 da quit_parms

99
100 brk

InBuffer 101
to 102 quit_parms db 4
InBuffer+1,y;put 0" at end of 0 103 ds 0
;input string to use as a 104
;terminator in the following 105
;print routine (I never said 106 string str "This is a test"
;this demo routine was elegant)

InBuffer+1,y
:Msg2Done

Iii l:t~J~%J~;it;.~::;=~~~~~; ; " .. (... < I) E%l1I

newsstands andj~ booJstQf~~ ev~rywhere. V(i .. ~re looking ····
'9(t~p-notch 4pple sqftwi~i~ We respQ!l.d .pro~ptly,/pay .

(~~I, @Jd ~~· acfij!,~Y f:~p !~ work with! .· .. ·. ·.·.·. ·. .·.·. .·.·.· .· ··.·. ··.· ..

fYrt~rs~~~~~~Er:~·~~~;:~~
............ ·,•·•·n)OUCUSk Publishing;

"new" strin

for a key

Hired Guns

8/16 is providing a free service to all programmers:
placement of a complimentary Msituation wanted" ad. If
you're available for hire and looking for a programming
job (from full-time to freelance). a listing in this directory
is your ticket to work. The ads are open to both 8 and
16 bit authors and are limited to 120 words or less. Be
sure to give your address, phone number, and email
addresses. and specify how much of a job you're after
(part-time? full-time? royalty-based? etc). Send it to
Situation Wanted, Ariel Publishin, Box 398, Pateros,
WA 98846 or send us E-Mail to R.W.LAMBERr. Note
that we'll run your ad twice- approximately every other
month for four months. You'll need to renew your
request to continue.
David Ely. 4567 W. 159th St. Lawndale, CA 90260. 213-371-4350
eves. or leave message. GEnie: [DDEL Y], AOL: "Dave Ely". Experi
enced in 8 and 16 bit assembly, C, Forth and BASIC. Available for
hourly or flat fee contract work on all Apple II platforms (llgs

~---------------------,
:Meet Other Apple II Developers!:
I See and hear about the latest Apple II 1
: hardware & software developments :

: Attend Apple's llgs College :
I I I'Dr JDJBt attendees, m;)Self lnduded, the
Developers Conference ha&ted by A.2·

I Ceatral In July 1989 wa& an experience
I bordering on the re//g/005.
1 8UJ Kennedy, Technical r.dilor, InCidf'.l'

I
8y popular demand, we're putting I

together another A.2-Ceatra/ S11••er
Coa~Ueac:e (popularly known In developer I
circles as 'Kansas rest'). Like last year, I
Apple is sending a nurmer of Ita engineers I
to do seminars and to run a bug-bustl ng

I Wltmut excq>tlon. evey attendee I have room. Unlike last year, Apple Is holding a I
I talked to feels the first A.2-Ceatra/ Jigs College at Avila the day before our 1
I Detdopen Collfemx:e at Avila CoUege In conference atarta. I
Kansas City was a success. The retreat In addllon to speakers from Apple, we'll

I atmosphere was a significant factor In have talks and demonstrations by active I
1 making It 50· developers willing to show their tricks. I
I CecU l'retweU, Technlcal r.dltor, CaU Apple There will be talks and exhibits by I

As 1 look ba~" 1 the ~~tlv co~anles that provide tools to developers. I, was JDJBt ~"""". e And there wUI be plenty of time to talk to I
I computf'.l' conff'.l'ence I have evf'.l' been to
and I certainly recommend It to anyone other developers. I

I with an /tterest In the Apple 11 line. Yes. 1 You mllllt register by June I to get the 1
I had a great time; Yf:IJ, /learned a lot; yes, 1 best prices, which begin at $500 and I
I met some outstanding people; and, Yf:IJ, 111 Include all meals. for more Information,
go back. call A.2-Celltral at 915-469-6502 (voice). I

I AI Martin. r.dllor, The Road Apple 915-469~7 (fax) or write ro Box 11250,1
I Overland rark, KS 66207. Or we'rel

Al.Cf.l'fi'IIAL on AppleUnk and .u.cumw,
I ono~~ I
I A2-Central Summer Conference I

: Avila College, Kansas City, Mo. :
I July 20 lk 21, 1990 I
L---------------------~

preferred). Have experience in writing desktop and classical applica
tions in 8 or 16 bit environments, hardware and firmware interfacing,
patching and program maintenance. Will work individually or as a
part if a group.

Jeff Holcomb, 18250 Marsh Ln, #515, Dallas, Tx 75287. (214) 306-
0710, leave message. GEnie: [Applied. Eng], AOL: "AE Jeff". I am
looking for part-time work in my spare time. I prefer 16-bit programs
but I am familiar with 8-bit. Strengths are GS/OS, desktop applica
tions, and sound programming. I have also worked with hardware/
firmware, desk accessories, CDevs, and inits.

Tom Hoover, Rt 1 Box 362, Lorena, TX, 76655, 817-752-9731
(day), 817-666-7605 (night). GEnie: Tom-Hoover; AOL: THoover;
Pro-Beagle, Pro-APA, or Pro-Carolina: thoover. Interests/strengths
are 8-bit utility programs, including TimeOut(tm) applications, written
in assembly language. Looking for "part-time" work only, to be done
in my spare time.

Jay Jennings, 14-9125 Robinson #2A, Overland Park, KS, 66212.
(913) 642-53961ate evenings or early mornings. GEnie: [A2.JAY] or
[PUNKWARE]. Apple llgs assembly language programmer. Looking
for short term projects, typically 2-4 weeks. Could be convinced to do
longer projects in some cases. Familiar with console, modem, and
network programming, desk accessories, programming utilities,
data bases, etc. GS/OS only. No DOS 3.3 and no 8-bit (unless the
money is extremely good and there's a company car involved).

Jim Lazar, 1109 Niesen Road, Port Washington, Wl53074, 414-
284-4838 nights, 414-781-6700 days. AOL: "WinkieJim", GEnie:
[WINKIEJIM]. Strengths include: GS/OS and ProDOS 8 work, desk
top applications, CDAs, NDAs, !NITs. Prefer working in 6502 or
65816 Assembly. Have experience with large and small programs,
utilities, games, disk copy routines and writing documentation.
Nibble, inCider and Caii-A.P.P.L.E. have published my work. Prefer
16-bit, but will do 8-bit work. Type of work depends on the situation,
would consider full-time for career move/benefits, otherwise 25 hrs/
month (flexible).

Stephen P. Lepisto, 12907 Strathern St., N. Hollywood, CA 91605,
818-503-2939. GEnie: S.LEPISTO. Available for full-time and part
time contract work (flat rate or royalties). Experienced in 6502 to
65816 assembly, BASIC and C. Can work in these or quickly learn
new languages and hardware (some experience with UNIX, MS
DOS, 8086 assembly). Experience in games, utilities, educational,
applications. Lots of experience in porting programs to Apples.
Programmed Hacker II (64k Apple II), Labyrinth (128k Apple), Fire
power GS and others. Can also write technical articles.

We'll run M- Z next month.

Warning! What follows really IS an advertisement. It just doesn't look like one (or pay like one- shucks).

An Advetorial by Ross W. Lambert, Publisher
You've heard of"Near Beer"? Well, this is nearly an ad. I couldn't face writing any more ad
copy this month. Exclamation points make me tired after a while- all that excitement, if you
know what I mean. Instead I decided I'd give you my thoughts on a few subjects related to
a couple of our products (so this is still sorta an ad).

First, the compiled, 8 bit BASICs. We sell Micol Advanced Basic Ile/Ilc and we11 order
ZBasic for you if you want it (our price is $54.95 plus shipping from Zedcor). But neither
environment may be for you.

Here's why: Just about every compiler I've seen has been frustratingly slow and unweildly
unless you are developing on a system larger or faster than the target system. For example,
if you are creating a program targeted at 64K machines, then the compiled languages are
a pain to use unless you're using at least a 128K machine for development. Likewise, if
you're putting together a 128K application, then you'd better have a RAM disk, a fast hard
drive, and/or a Ilgs. Furthermore, the compilers have so much work to do that we
categorically do not recommend them forl.O mhz machines.

The reason for this state of affairs is that language development systems typically have
three separate parts; an editor, support routines or libraries, and the actual compiler which
turns your text (source code)into machine code. If you are writing a 128K application using
a 128K Apple, then the entire development system cannot fit into memory at the same time
as your program. There is therefore a ton of disk access as segments get swapped in and out.
This is true for both ZBasic and MAB Ile/Ilc, and it can drive you nuts if you are used to
working in Apple soft.

A better alternative for those of you with 128K (or less) machines without hard drives or
RAM disks is the Toolbox Series from Roger Wagner Publishing. These pure assembly
language extensions to Applesoft give you much of the advantages of the compiled BASICs
without nearly as much hassle. You simply install the routine you want and then program
normally in Applesoft (without the disk access horrors of compilation). We are not currently
selling any RWP products (we're gradually moving out of software sales except for those
products we develop ourselves), but you can certainly get more information or order directly
from the good folks in El Cajon (619/442-0522).

Back at the ranch, if you have a RAM disk and a fast system, the compiled languages can
really provide a high level programming environment with built-in text editors and
generate fast machine code for maximal use of a smaller target machine. Thus you can
probably coax a little more overall performance from a compiled BASIC program (or, in the

case of ZBasic, get three our four times as much numerical accuracy in floating point
computations). The compilers are really quite nice to program with on a Transwarped GS.

As for which of the compiled 8 bit BASICs is better, at this point I can only say that "It de
pends". For graphics related things (including text generation on the graphics screens), I like
ZBasic better. For text based programs, I like MAB, the reason being that MAB allows you
to use more of the 128K for variables. This means more data in memory. As for documen
tation quality, the nod definitely goes to ZBasic. As for quality of the text editors, MAB is light
years ahead of ZBasic.

You may be wondering why we don't sell a "C" or a Pascal- as I mentioned earlier, we're
backing away from non-Ariel software sales due to about 15 dozen conflicts ofinterest. Some
of our stock is being liquidated by Kevin Thornton atKA T Systems (see their ad on page 14).
We do hack inC around here (with varying degrees of success).

We are still selling MAB Ile/IIc and MAB GS, hence you can get in on a really great deal as
part of our part of our liquidation sale. We warm a move these buggers now, so MAB Ile/IIc
has been reduced to $59.95 and MAB GS has been slashed to $75.

We're still selling our homegrown products, of course, and we have several very exciting ad
ditional projects well under way. For now, though, I think the best deal in the house is
8/16 on Disk. We're talking serious value here, friends. Each and every month you get at
least 500K ofmaterial- everything from the magazine plus a whole lot more. We have both
an 8 bit and a 16 bit program selector/ file viewer/ graphics viewer to help you navigate (some
folks are finding these gadgets useful in their own right). And our featured files so far have
included the actual source code to: Floyd Zink's Binary Library Utility, Bruce Mah's File
Attribute Zapper II, Parik Rao's Oreal APW developer's utilities, and more other goodies than
you could imagine (how about multi-tasking on your lie?). These disks are fun, educational,
and useful. You are welcome to lift any routines or libraries you find and plop them right into
your own projects (with the exception of a very few things where authors have indicated they
wish otherwise). One year of the disk is $69.95, six months is $39.95, and three months is
$21. Oh yeah, we'll sell you two years of the disk for $129.95. Any single disk is $8.00.

This has got to be one of the strangest ads on record, but ifl had to typeset one more breathless
48 pt headline I wuz gonna puke.

Give us a call at 509/923-2249, or write to: Mike Rochip, c/o Ariel Publishing, Box 398,
Pateros, W A 98846

The Sensational Lasers
Apple lle/llc Compatible

$345.~7t~~~e~r~g~:~s!
~ Now Includes
COPY II PLUS®

The Laser 128® features full Apple® II compatibility with an internal disk drive, serial, parallel, modem, and
mouse ports. When you're ready to expand your system, there 's an external drive port and expansion slot. The
Laser 128 even Includes 10 free software programs' Take advantage of this exceptional value today $345

Super High Speed Optiont

only $385
The LASER 128EX has all the features of the
LASER 128, plus a triple speed processor and
memory expansion to 1MB $385.00

The LASER 128EX/2 has all the features of the
LASER 128EX, plus MIDI , Clock and Daisy
Chain Drive Controller $420.00

DISK DRIVES
* 5.25 LASER/Apple 11c $ 99.00
* 5.25 LASER/Apple 11e $ 99.00
* 3.50 LASER/ Apple BOOK $179.00
* 5.25 LASER Daisy Chain ... flll~D$109 . 00
* 3.50 LASER Daisy Chain . .. flll~D$179.00

USA MICRO

Save Money by Buying
a Complete Packagel

THE STAR a LASER 128 Computer with 12"
Monochrome Monitor and the LASER 145E
Printer $620.00

THE SUPERSTAR a LASER 128 Computer with
14" RGB Color Monitor and the LASER 145E
Printer $785.00

ACCESSORIES
* 12" Monochrome Monitor $ 89.00
* 14" RGB Color Monitor $249.00
* LASER 190E Printer $219.00
*LASER 145E Printer $189.00
• Mouse $ 59.00
• Joystick (3) Button $ 29.00
• 1200/2400 Baud Modem Auto $129.00

YOUR DIRECT SOURCE FOR APPLE
AND IBM COMPATIBLE COMPUTERS

Laser l281s a regrstered trademark of Vid~ Te<:tmology Computers.lne_ Apple. Al)ple lie. Apple IIC and lmagewnter are registered trademarks ol Apple Computer. lnc.

BULK RATE
U.S. POSTAGE

PAID
PATEROS, WA
PERMIT NO. 7

http://apple2scans.net

	8/16 - Sweet 16 Again & "In Search of Bert"
	The Publisher's Pen - Ross W. Lambert
	Sweet 16: A Blast From the Past - Matt Neuberg
	IIGS Animation: Illusions of Motion, Part II - Steven Lepisto
	Basically Applesoft: Parms Away: Passing Parameters to Subroutines - Robert Stong
	The Merlin Maniac: Making a List & Checking It Twice - Steve Stephenson
	Soft Thoughts: Why I Wrote SuperPatch in BASIC - John Link
	Just Like the Big Boys: AppleWorks-Style Line Input - Tom Hoover
	Hired Guns
	An Advertorial - Ross W. Lambert

